[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Groupwise Image Registration with Atlas of Multiple Resolutions Refined at Test Phase

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14394))

  • 611 Accesses

Abstract

Groupwise image registration (GIR) is a fundamental task that facilitates the simultaneous deformation of a group of subjects towards a specified or implicit center. Existing works mainly focus on either optimization-based methods that provide superb results but consume substantial time, or learning-based methods that are efficient but lack the flexibility to generalize across different domains and scales. To leverage the advantages of both methodologies, we present a robust method, Test-time Atlas adaptation for Groupwise registration (TAG), which generates a high-quality, group-specific atlas for groups of varying resolutions. Our method allows training at the test phase on target groups based on a learning-based GIR framework that bridges the gap between diverse groups. Besides the refinement of atlases at the original resolution, we propose additional modules to extend the scheme to groups of higher or lower resolutions at little cost. The method is evaluated on 3D brain MRI datasets to demonstrate its effectiveness. Evaluations of the registration accuracy and unbiasedness of atlases illustrate that TAG outperforms state-of-the-art benchmarks and maintains flexibility and robustness under a variety of scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, S., Fan, J., Dong, P., Cao, X., Yap, P.T., Shen, D.: Deep learning deformation initialization for rapid groupwise registration of inhomogeneous image populations. Front. Neuroinform. 13, 34 (2019)

    Article  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  3. Berthelot, D., Raffel, C., Roy, A., Goodfellow, I.: Understanding and improving interpolation in autoencoders via an adversarial regularizer. arXiv preprint arXiv:1807.07543 (2018)

  4. Bhatia, K.K., et al.: Groupwise combined segmentation and registration for atlas construction. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 532–540. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75757-3_65

    Chapter  Google Scholar 

  5. Che, T., et al.: Deep group-wise registration for multi-spectral images from fundus images. IEEE Access 7, 27650–27661 (2019)

    Article  Google Scholar 

  6. Dalca, A., Rakic, M., Guttag, J., Sabuncu, M.: Learning conditional deformable templates with convolutional networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  7. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med. Image Anal. 57, 226–236 (2019)

    Article  Google Scholar 

  8. Ding, Z., Niethammer, M.: Aladdin: joint atlas building and diffeomorphic registration learning with pairwise alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20784–20793 (2022)

    Google Scholar 

  9. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  10. Hamm, J., Davatzikos, C., Verma, R.: Efficient large deformation registration via geodesics on a learned manifold of images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 680–687. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_84

    Chapter  Google Scholar 

  11. He, Z., Chung, A.C.S.: Learning-based template synthesis for groupwise image registration. In: Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C. (eds.) SASHIMI 2021. LNCS, vol. 12965, pp. 55–66. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87592-3_6

    Chapter  Google Scholar 

  12. He, Z., Chung, A.C.S.: SETgen: scalable and efficient template generation framework for groupwise medical image registration. arXiv preprint arXiv:2211.05622 (2022)

  13. He, Z., Chung, A.C.: Unsupervised end-to-end groupwise registration framework without generating templates. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 375–379. IEEE (2020)

    Google Scholar 

  14. Jia, H., Wu, G., Wang, Q., Shen, D.: ABSORB: atlas building by self-organized registration and bundling. Neuroimage 51(3), 1057–1070 (2010)

    Article  Google Scholar 

  15. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23, S151–S160 (2004)

    Article  Google Scholar 

  16. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  17. Li, Y., Sixou, B., Peyrin, F.: A review of the deep learning methods for medical images super resolution problems. IRBM 42(2), 120–133 (2021)

    Article  Google Scholar 

  18. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (oasis): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  19. Mok, T.C.W., Chung, A.C.S.: Large deformation image registration with anatomy-aware Laplacian pyramid networks. In: Shusharina, N., Heinrich, M.P., Huang, R. (eds.) MICCAI 2020. LNCS, vol. 12587, pp. 61–67. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71827-5_7

    Chapter  Google Scholar 

  20. Mok, T.C.W., Chung, A.C.S.: Conditional deformable image registration with convolutional neural network. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 35–45. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_4

    Chapter  Google Scholar 

  21. Mok, T.C., Chung, A.: Affine medical image registration with coarse-to-fine vision transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20835–20844 (2022)

    Google Scholar 

  22. Mueller, S.G., et al.: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI). Alzheimer’s Dementia 1(1), 55–66 (2005)

    Article  Google Scholar 

  23. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: International Conference on Machine Learning, pp. 1278–1286. PMLR (2014)

    Google Scholar 

  24. Shen, Z., Han, X., Xu, Z., Niethammer, M.: Networks for joint affine and non-parametric image registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4224–4233 (2019)

    Google Scholar 

  25. Sinclair, M., et al.: Atlas-ISTN: joint segmentation, registration and atlas construction with image-and-spatial transformer networks. Med. Image Anal. 78, 102383 (2022)

    Article  Google Scholar 

  26. Tang, Z., Wu, Y., Fan, Y.: Groupwise registration of MR brain images with tumors. Phys. Med. Biol. 62(17), 6853 (2017)

    Article  Google Scholar 

  27. Wu, G., Jia, H., Wang, Q., Shen, D.: Sharpmean: groupwise registration guided by sharp mean image and tree-based registration. Neuroimage 56(4), 1968–1981 (2011)

    Article  Google Scholar 

  28. Ying, S., Wu, G., Wang, Q., Shen, D.: Hierarchical unbiased graph shrinkage (hugs): a novel groupwise registration for large data set. Neuroimage 84, 626–638 (2014)

    Article  Google Scholar 

  29. Zhu, W., Huang, Y., Xu, D., Qian, Z., Fan, W., Xie, X.: Test-time training for deformable multi-scale image registration. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13618–13625. IEEE (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyi He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Z., Mok, T.C.W., Chung, A.C.S. (2023). Groupwise Image Registration with Atlas of Multiple Resolutions Refined at Test Phase. In: Woo, J., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops. MICCAI 2023. Lecture Notes in Computer Science, vol 14394. Springer, Cham. https://doi.org/10.1007/978-3-031-47425-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47425-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47424-8

  • Online ISBN: 978-3-031-47425-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics