Abstract
Groupwise image registration (GIR) is a fundamental task that facilitates the simultaneous deformation of a group of subjects towards a specified or implicit center. Existing works mainly focus on either optimization-based methods that provide superb results but consume substantial time, or learning-based methods that are efficient but lack the flexibility to generalize across different domains and scales. To leverage the advantages of both methodologies, we present a robust method, Test-time Atlas adaptation for Groupwise registration (TAG), which generates a high-quality, group-specific atlas for groups of varying resolutions. Our method allows training at the test phase on target groups based on a learning-based GIR framework that bridges the gap between diverse groups. Besides the refinement of atlases at the original resolution, we propose additional modules to extend the scheme to groups of higher or lower resolutions at little cost. The method is evaluated on 3D brain MRI datasets to demonstrate its effectiveness. Evaluations of the registration accuracy and unbiasedness of atlases illustrate that TAG outperforms state-of-the-art benchmarks and maintains flexibility and robustness under a variety of scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ahmad, S., Fan, J., Dong, P., Cao, X., Yap, P.T., Shen, D.: Deep learning deformation initialization for rapid groupwise registration of inhomogeneous image populations. Front. Neuroinform. 13, 34 (2019)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)
Berthelot, D., Raffel, C., Roy, A., Goodfellow, I.: Understanding and improving interpolation in autoencoders via an adversarial regularizer. arXiv preprint arXiv:1807.07543 (2018)
Bhatia, K.K., et al.: Groupwise combined segmentation and registration for atlas construction. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 532–540. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75757-3_65
Che, T., et al.: Deep group-wise registration for multi-spectral images from fundus images. IEEE Access 7, 27650–27661 (2019)
Dalca, A., Rakic, M., Guttag, J., Sabuncu, M.: Learning conditional deformable templates with convolutional networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med. Image Anal. 57, 226–236 (2019)
Ding, Z., Niethammer, M.: Aladdin: joint atlas building and diffeomorphic registration learning with pairwise alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20784–20793 (2022)
Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)
Hamm, J., Davatzikos, C., Verma, R.: Efficient large deformation registration via geodesics on a learned manifold of images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 680–687. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_84
He, Z., Chung, A.C.S.: Learning-based template synthesis for groupwise image registration. In: Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C. (eds.) SASHIMI 2021. LNCS, vol. 12965, pp. 55–66. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87592-3_6
He, Z., Chung, A.C.S.: SETgen: scalable and efficient template generation framework for groupwise medical image registration. arXiv preprint arXiv:2211.05622 (2022)
He, Z., Chung, A.C.: Unsupervised end-to-end groupwise registration framework without generating templates. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 375–379. IEEE (2020)
Jia, H., Wu, G., Wang, Q., Shen, D.: ABSORB: atlas building by self-organized registration and bundling. Neuroimage 51(3), 1057–1070 (2010)
Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23, S151–S160 (2004)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)
Li, Y., Sixou, B., Peyrin, F.: A review of the deep learning methods for medical images super resolution problems. IRBM 42(2), 120–133 (2021)
Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (oasis): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)
Mok, T.C.W., Chung, A.C.S.: Large deformation image registration with anatomy-aware Laplacian pyramid networks. In: Shusharina, N., Heinrich, M.P., Huang, R. (eds.) MICCAI 2020. LNCS, vol. 12587, pp. 61–67. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71827-5_7
Mok, T.C.W., Chung, A.C.S.: Conditional deformable image registration with convolutional neural network. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 35–45. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_4
Mok, T.C., Chung, A.: Affine medical image registration with coarse-to-fine vision transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20835–20844 (2022)
Mueller, S.G., et al.: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI). Alzheimer’s Dementia 1(1), 55–66 (2005)
Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: International Conference on Machine Learning, pp. 1278–1286. PMLR (2014)
Shen, Z., Han, X., Xu, Z., Niethammer, M.: Networks for joint affine and non-parametric image registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4224–4233 (2019)
Sinclair, M., et al.: Atlas-ISTN: joint segmentation, registration and atlas construction with image-and-spatial transformer networks. Med. Image Anal. 78, 102383 (2022)
Tang, Z., Wu, Y., Fan, Y.: Groupwise registration of MR brain images with tumors. Phys. Med. Biol. 62(17), 6853 (2017)
Wu, G., Jia, H., Wang, Q., Shen, D.: Sharpmean: groupwise registration guided by sharp mean image and tree-based registration. Neuroimage 56(4), 1968–1981 (2011)
Ying, S., Wu, G., Wang, Q., Shen, D.: Hierarchical unbiased graph shrinkage (hugs): a novel groupwise registration for large data set. Neuroimage 84, 626–638 (2014)
Zhu, W., Huang, Y., Xu, D., Qian, Z., Fan, W., Xie, X.: Test-time training for deformable multi-scale image registration. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13618–13625. IEEE (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
He, Z., Mok, T.C.W., Chung, A.C.S. (2023). Groupwise Image Registration with Atlas of Multiple Resolutions Refined at Test Phase. In: Woo, J., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops. MICCAI 2023. Lecture Notes in Computer Science, vol 14394. Springer, Cham. https://doi.org/10.1007/978-3-031-47425-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-47425-5_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47424-8
Online ISBN: 978-3-031-47425-5
eBook Packages: Computer ScienceComputer Science (R0)