Abstract
Groupwise image registration (GIR), as a fundamental task during medical image processing, aims to transform a group of images into a common space simultaneously. Most GIR methods consist of creating one template image and registering all group subjects to the template space. This paper presents a novel learning-based template synthesis method that can produce sharper and unbiased template images in shorter runtime. The method is based on the generative adversarial network (GAN) scheme, which is expected to generate authentic images. Besides GAN, we use a registration network to warp images and an auxiliary segmentor to take advantage of semantic information and improve the quality of generated images. First, the label mask will be combined with medical images as the input of the discriminator. Second, we calculate the entropy of pixel-wise label probability distribution as a new loss term. We compare our method with three baseline methods on 2D and 3D brain MR images in the experiments. We evaluate the performance using metrics corresponding to accuracy, smoothness, and unbiasedness. Results illustrate that our method outperforms the baseline methods and can achieve the overall state-of-the-art performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agier, R., Valette, S., Kéchichian, R., Fanton, L., Prost, R.: Hubless keypoint-based 3D deformable groupwise registration. Med. Image Anal. 59, 101564 (2020)
Auzias, G., et al.: Diffeomorphic brain registration under exhaustive sulcal constraints. IEEE Trans. Med. Imaging 30(6), 1214–1227 (2011)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)
Ben-Cohen, A., Klang, E., Raskin, S.P., Amitai, M.M., Greenspan, H.: Virtual PET images from CT data using deep convolutional networks: initial results. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 49–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_6
Bi, L., Kim, J., Kumar, A., Feng, D., Fulham, M.: Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (GANs). In: Cardoso, M.J., et al. (eds.) CMMI/SWITCH/RAMBO -2017. LNCS, vol. 10555, pp. 43–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67564-0_5
Cai, J., Zhang, Z., Cui, L., Zheng, Y., Yang, L.: Towards cross-modal organ translation and segmentation: a cycle-and shape-consistent generative adversarial network. Med. Image Anal. 52, 174–184 (2019)
Chartsias, A., Joyce, T., Dharmakumar, R., Tsaftaris, S.A.: Adversarial image synthesis for unpaired multi-modal cardiac data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 3–13. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_1
Che, T., et al.: DGR-Net: deep groupwise registration of multispectral images. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 706–717. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_55
Dalca, A.V., Rakic, M., Guttag, J., Sabuncu, M.R.: Learning conditional deformable templates with convolutional networks. arXiv preprint arXiv:1908.02738 (2019)
Dong, P., Cao, X., Yap, P.T., Shen, D.: Fast groupwise registration using multi-level and multi-resolution graph shrinkage. Sci. Rep. 9(1), 1–12 (2019)
Fonov, V., et al.: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1), 313–327 (2011)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
He, Z., Chung, A.C.: Unsupervised end-to-end groupwise registration framework without generating templates. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 375–379. IEEE (2020)
Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. arXiv preprint arXiv:1506.02025 (2015)
Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23, S151–S160 (2004)
Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)
Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21
Nie, D., Cao, X., Gao, Y., Wang, L., Shen, D.: Estimating CT image from MRI data using 3D fully convolutional networks. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 170–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_18
O’Donnell, L.J., Wells, W.M., Golby, A.J., Westin, C.-F.: Unbiased groupwise registration of white matter tractography. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 123–130. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_16
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sabuncu, M.R., Balci, S.K., Shenton, M.E., Golland, P.: Image-driven population analysis through mixture modeling. IEEE Trans. Med. Imaging 28(9), 1473–1487 (2009)
Wang, Y., et al.: Semisupervised tripled dictionary learning for standard-dose pet image prediction using low-dose pet and multimodal MRI. IEEE Trans. Biomed. Eng. 64(3), 569–579 (2016)
Wu, G., Jia, H., Wang, Q., Shen, D.: Sharpmean: groupwise registration guided by sharp mean image and tree-based registration. Neuroimage 56(4), 1968–1981 (2011)
Yaniv, Z., Lowekamp, B.C., Johnson, H.J., Beare, R.: Simpleitk image-analysis notebooks: a collaborative environment for education and reproducible research. J. Digit. Imaging 31(3), 290–303 (2018). https://doi.org/10.1007/s10278-017-0037-8
Yu, B., Wang, Y., Wang, L., Shen, D., Zhou, L.: Medical image synthesis via deep learning. In: Lee, G., Fujita, H. (eds.) Deep Learning in Medical Image Analysis. AEMB, vol. 1213, pp. 23–44. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33128-3_2
Yu, B., Zhou, L., Wang, L., Shi, Y., Fripp, J., Bourgeat, P.: Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Trans. Med. Imaging 38(7), 1750–1762 (2019)
Zhang, T., et al.: SkrGAN: sketching-rendering unconditional generative adversarial networks for medical image synthesis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 777–785. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_85
Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9242–9251 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
He, Z., Chung, A.C.S. (2021). Learning-Based Template Synthesis for Groupwise Image Registration. In: Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2021. Lecture Notes in Computer Science(), vol 12965. Springer, Cham. https://doi.org/10.1007/978-3-030-87592-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-87592-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87591-6
Online ISBN: 978-3-030-87592-3
eBook Packages: Computer ScienceComputer Science (R0)