[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Adaptive Parallel Average Schwarz Preconditioner for Crouzeix-Raviart Finite Volume Method

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2022)

Abstract

In this paper, we describe and analyze an Average Schwarz Method with spectrally enriched coarse space for a Crouzeix-Raviart finite volume element discretization of a multiscale problem. The derived preconditioner is symmetric and we apply GMRES iterative method to the preconditioned problem obtaining the convergence rate of GMRES weakly dependent on the ratio of the coarse to fine mesh h/H if the enrichments of the coarse space contain sufficiently many specially constructed eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bjørstad, P.E., Dryja, M., Rahman, T.: Additive Schwarz methods for elliptic mortar finite element problems. Numer. Math. 95(3), 427–457 (2003). https://doi.org/10.1007/s00211-002-0429-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Bjørstad, P.E., Dryja, M., Vainikko, E.: Additive Schwarz methods without subdomain overlap and with new coarse spaces. In: Domain decomposition methods in sciences and engineering (Beijing, 1995), pp. 141–157. Wiley, Chichester (1997)

    Google Scholar 

  3. Braess, D.: Finite elements. Cambridge University Press, Cambridge, third edn. theory, fast solvers, and applications in elasticity theory, Translated from the German by Larry L. Schumaker (2007). https://doi.org/10.1017/CBO9780511618635,

  4. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15. Springer, New York, third edn. (2008). https://doi.org/10.1007/978-0-387-75934-0

  5. Brenner, S.C., Sung, L.Y.: Balancing domain decomposition for nonconforming plate elements. Numer. Math. 83(1), 25–52 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, X.C., Widlund, O.B.: Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Statist. Comput. 13(1), 243–258 (1992). https://doi.org/10.1137/0913013

    Article  MathSciNet  MATH  Google Scholar 

  7. Chatzipantelidis, P.: A finite volume method based on the Crouzeix-Raviart element for elliptic PDE’s in two dimensions. Numer. Math. 82(3), 409–432 (1999). https://doi.org/10.1007/s002110050425

    Article  MathSciNet  MATH  Google Scholar 

  8. Chatzipantelidis, P.: Finite volume methods for elliptic PDE’s: a new approach. M2AN Math. Model. Numer. Anal. 36(2), 307–324 (2002). https://doi.org/10.1051/m2an:2002014

  9. Chou, S.H., Huang, J.: A domain decomposition algorithm for general covolume methods for elliptic problems. J. Numer. Math. 11(3), 179–194 (2003). https://doi.org/10.1163/156939503322553072

    Article  MathSciNet  MATH  Google Scholar 

  10. Dryja, M., Sarkis, M.: Additive average Schwarz methods for discretization of elliptic problems with highly discontinuous coefficients. Comput. Methods Appl. Math. 10(2), 164–176 (2010). https://doi.org/10.2478/cmam-2010-0009

    Article  MathSciNet  MATH  Google Scholar 

  11. Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357 (1983). https://doi.org/10.1137/0720023

    Article  MathSciNet  MATH  Google Scholar 

  12. Ewing, R.E., Li, Z., Lin, T., Lin, Y.: The immersed finite volume element methods for the elliptic interface problems. Math. Comput. Simulation 50(1–4), 63–76 (1999). https://doi.org/10.1016/S0378-4754(99)00061-0, modelling ’98 (Prague)

  13. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888 (2002). https://doi.org/10.1137/S0036142900368873

    Article  MathSciNet  MATH  Google Scholar 

  14. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010). https://doi.org/10.1137/090751190

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, Y., Liu, J., Yang, M.: Finite volume element methods: an overview on recent developments. Int. J. Numer. Anal. Model. Ser. B 4(1), 14–34 (2013)

    Google Scholar 

  16. Loneland, A., Marcinkowski, L., Rahman, T.: Additive average Schwarz method for a Crouzeix–Raviart finite volume element discretization of elliptic problems with heterogeneous coefficients. Numer. Math. 134(1), 91–118 (2015). https://doi.org/10.1007/s00211-015-0771-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Loneland, A., Marcinkowski, L., Rahman, T.: Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems. Electron. Trans. Numer. Anal. 44, 443–461 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Marcinkowski, L., Rahman, T., Loneland, A., Valdman, J.: Additive Schwarz preconditioner for the finite volume element discretization of symmetric elliptic problems. BIT Numer. Math. 56(3), 967–993 (2015). https://doi.org/10.1007/s10543-015-0581-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Marcinkowski, L., Loneland, A., Rahman, T.: Schwarz methods for a crouzeix-raviart finite volume discretization of elliptic problems. In: Dickopf, T., Gander, M.J., Halpern, L., Krause, R., Pavarino, L.F. (eds.) Domain Decomposition Methods in Science and Engineering XXII. LNCSE, vol. 104, pp. 595–602. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-18827-0_61

    Chapter  MATH  Google Scholar 

  20. Marcinkowski, L., Rahman, T.: Additive average Schwarz with adaptive coarse spaces: scalable algorithms for multiscale problems. Electron. Trans. Numer. Anal. 49, 28–40 (2018). https://doi.org/10.1553/etna_vol49s28

    Article  MathSciNet  MATH  Google Scholar 

  21. Marcinkowski, L., Rahman, T., Khademi, A.: Adaptive Schwarz method for Crouzeix-Raviart multiscale problems in 2d. In: Domain decomposition methods in science and engineering XXVI. Lect. Notes Comput. Sci. Eng., Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95025-5_48

  22. Rahman, T., Xu, X., Hoppe, R.: Additive Schwarz methods for the Crouzeix-Raviart mortar finite element for elliptic problems with discontinuous coefficients. Numer. Math. 101(3), 551–572 (2005). https://doi.org/10.1007/s00211-005-0625-2

    Article  MathSciNet  MATH  Google Scholar 

  23. Rui, H., Bi, C.: Convergence analysis of an upwind finite volume element method with crouzeix-raviart element for non-selfadjoint and indefinite problems. Front. Math. China 3(4), 563–579 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986). https://doi.org/10.1137/0907058

    Article  MathSciNet  MATH  Google Scholar 

  25. Sarkis, M., Szyld, D.B.: Optimal left and right additive Schwarz preconditioning for minimal residual methods with Euclidean and energy norms. Comput. Methods Appl. Mech. Engrg. 196(8), 1612–1621 (2007). https://doi.org/10.1016/j.cma.2006.03.027

    Article  MathSciNet  MATH  Google Scholar 

  26. Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain decomposition: Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  27. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126(4), 741–770 (2013). https://doi.org/10.1007/s00211-013-0576-y

    Article  MathSciNet  MATH  Google Scholar 

  28. Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory, Springer Series in Computational Mathematics, vol. 34. Springer-Verlag, Berlin (2005). https://doi.org/10.1007/b137868

  29. Zhang, S.: On domain decomposition algorithms for covolume methods for elliptic problems. Comput. Methods Appl. Mech. Engrg. 196(1–3), 24–32 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Marcinkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marcinkowski, L., Rahman, T. (2023). Adaptive Parallel Average Schwarz Preconditioner for Crouzeix-Raviart Finite Volume Method. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2022. Lecture Notes in Computer Science, vol 13827. Springer, Cham. https://doi.org/10.1007/978-3-031-30445-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30445-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30444-6

  • Online ISBN: 978-3-031-30445-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics