Abstract
In this paper, we describe and analyze an Average Schwarz Method with spectrally enriched coarse space for a Crouzeix-Raviart finite volume element discretization of a multiscale problem. The derived preconditioner is symmetric and we apply GMRES iterative method to the preconditioned problem obtaining the convergence rate of GMRES weakly dependent on the ratio of the coarse to fine mesh h/H if the enrichments of the coarse space contain sufficiently many specially constructed eigenfunctions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bjørstad, P.E., Dryja, M., Rahman, T.: Additive Schwarz methods for elliptic mortar finite element problems. Numer. Math. 95(3), 427–457 (2003). https://doi.org/10.1007/s00211-002-0429-6
Bjørstad, P.E., Dryja, M., Vainikko, E.: Additive Schwarz methods without subdomain overlap and with new coarse spaces. In: Domain decomposition methods in sciences and engineering (Beijing, 1995), pp. 141–157. Wiley, Chichester (1997)
Braess, D.: Finite elements. Cambridge University Press, Cambridge, third edn. theory, fast solvers, and applications in elasticity theory, Translated from the German by Larry L. Schumaker (2007). https://doi.org/10.1017/CBO9780511618635,
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15. Springer, New York, third edn. (2008). https://doi.org/10.1007/978-0-387-75934-0
Brenner, S.C., Sung, L.Y.: Balancing domain decomposition for nonconforming plate elements. Numer. Math. 83(1), 25–52 (1999)
Cai, X.C., Widlund, O.B.: Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Statist. Comput. 13(1), 243–258 (1992). https://doi.org/10.1137/0913013
Chatzipantelidis, P.: A finite volume method based on the Crouzeix-Raviart element for elliptic PDE’s in two dimensions. Numer. Math. 82(3), 409–432 (1999). https://doi.org/10.1007/s002110050425
Chatzipantelidis, P.: Finite volume methods for elliptic PDE’s: a new approach. M2AN Math. Model. Numer. Anal. 36(2), 307–324 (2002). https://doi.org/10.1051/m2an:2002014
Chou, S.H., Huang, J.: A domain decomposition algorithm for general covolume methods for elliptic problems. J. Numer. Math. 11(3), 179–194 (2003). https://doi.org/10.1163/156939503322553072
Dryja, M., Sarkis, M.: Additive average Schwarz methods for discretization of elliptic problems with highly discontinuous coefficients. Comput. Methods Appl. Math. 10(2), 164–176 (2010). https://doi.org/10.2478/cmam-2010-0009
Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357 (1983). https://doi.org/10.1137/0720023
Ewing, R.E., Li, Z., Lin, T., Lin, Y.: The immersed finite volume element methods for the elliptic interface problems. Math. Comput. Simulation 50(1–4), 63–76 (1999). https://doi.org/10.1016/S0378-4754(99)00061-0, modelling ’98 (Prague)
Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888 (2002). https://doi.org/10.1137/S0036142900368873
Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010). https://doi.org/10.1137/090751190
Lin, Y., Liu, J., Yang, M.: Finite volume element methods: an overview on recent developments. Int. J. Numer. Anal. Model. Ser. B 4(1), 14–34 (2013)
Loneland, A., Marcinkowski, L., Rahman, T.: Additive average Schwarz method for a Crouzeix–Raviart finite volume element discretization of elliptic problems with heterogeneous coefficients. Numer. Math. 134(1), 91–118 (2015). https://doi.org/10.1007/s00211-015-0771-0
Loneland, A., Marcinkowski, L., Rahman, T.: Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems. Electron. Trans. Numer. Anal. 44, 443–461 (2015)
Marcinkowski, L., Rahman, T., Loneland, A., Valdman, J.: Additive Schwarz preconditioner for the finite volume element discretization of symmetric elliptic problems. BIT Numer. Math. 56(3), 967–993 (2015). https://doi.org/10.1007/s10543-015-0581-x
Marcinkowski, L., Loneland, A., Rahman, T.: Schwarz methods for a crouzeix-raviart finite volume discretization of elliptic problems. In: Dickopf, T., Gander, M.J., Halpern, L., Krause, R., Pavarino, L.F. (eds.) Domain Decomposition Methods in Science and Engineering XXII. LNCSE, vol. 104, pp. 595–602. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-18827-0_61
Marcinkowski, L., Rahman, T.: Additive average Schwarz with adaptive coarse spaces: scalable algorithms for multiscale problems. Electron. Trans. Numer. Anal. 49, 28–40 (2018). https://doi.org/10.1553/etna_vol49s28
Marcinkowski, L., Rahman, T., Khademi, A.: Adaptive Schwarz method for Crouzeix-Raviart multiscale problems in 2d. In: Domain decomposition methods in science and engineering XXVI. Lect. Notes Comput. Sci. Eng., Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95025-5_48
Rahman, T., Xu, X., Hoppe, R.: Additive Schwarz methods for the Crouzeix-Raviart mortar finite element for elliptic problems with discontinuous coefficients. Numer. Math. 101(3), 551–572 (2005). https://doi.org/10.1007/s00211-005-0625-2
Rui, H., Bi, C.: Convergence analysis of an upwind finite volume element method with crouzeix-raviart element for non-selfadjoint and indefinite problems. Front. Math. China 3(4), 563–579 (2008)
Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986). https://doi.org/10.1137/0907058
Sarkis, M., Szyld, D.B.: Optimal left and right additive Schwarz preconditioning for minimal residual methods with Euclidean and energy norms. Comput. Methods Appl. Mech. Engrg. 196(8), 1612–1621 (2007). https://doi.org/10.1016/j.cma.2006.03.027
Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain decomposition: Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (1996)
Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126(4), 741–770 (2013). https://doi.org/10.1007/s00211-013-0576-y
Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory, Springer Series in Computational Mathematics, vol. 34. Springer-Verlag, Berlin (2005). https://doi.org/10.1007/b137868
Zhang, S.: On domain decomposition algorithms for covolume methods for elliptic problems. Comput. Methods Appl. Mech. Engrg. 196(1–3), 24–32 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Marcinkowski, L., Rahman, T. (2023). Adaptive Parallel Average Schwarz Preconditioner for Crouzeix-Raviart Finite Volume Method. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2022. Lecture Notes in Computer Science, vol 13827. Springer, Cham. https://doi.org/10.1007/978-3-031-30445-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-30445-3_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30444-6
Online ISBN: 978-3-031-30445-3
eBook Packages: Computer ScienceComputer Science (R0)