Abstract
In this paper we introduce an additive Schwarz method for a Crouzeix–Raviart finite volume element discretization of a second order elliptic problem with discontinuous coefficients, where the discontinuities are both inside the subdomains and across and along the subdomain boundaries. We show that, depending on the distribution of the coefficient in the model problem, the parameters describing the generalized minimal residual method (GMRES) convergence rate of the proposed method depend linearly on the mesh parameters . Also, under certain restrictions on the distribution of the coefficient, the convergence of the GMRES method is independent of jumps in the coefficient.
Similar content being viewed by others
References
Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24(4), 777–787 (1987). doi:10.1137/0724050
Bjørstad, P.E., Dryja, M., Vainikko, E.: Additive Schwarz methods without subdomain overlap and with new coarse spaces. In: Domain Decomposition Methods in Sciences and Engineering (Beijing, 1995), pp. 141–157. Wiley, Chichester (1997)
Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65(215), 897–921 (1996)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2008)
Brenner, S.C., Sung, L.Y.: Balancing domain decomposition for nonconforming plate elements. Numer. Math. 83(1), 25–52 (1999)
Cai, X.C.: Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic partial differential equations. ProQuest LLC, Ann Arbor, MI (1989). Thesis (Ph.D.)—New York University. http://search.proquest.com/docview/303799778?accountid=8579
Cai, X.C., Widlund, O.B.: Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Stat. Comput. 13(1), 243–258 (1992). doi:10.1137/0913013
Cai, Z.Q.: On the finite volume element method. Numer. Math. 58(7), 713–735 (1991). doi:10.1007/BF01385651
Chatzipantelidis, P.: A finite volume method based on the Crouzeix–Raviart element for elliptic pde’s in two dimensions. Numer. Math. 82(3), 409–432 (1999)
Chatzipantelidis, P.: Finite volume methods for elliptic PDE’s: a new approach. M2AN. Math. Model. Numer. Anal. 36(2), 307–324 (2002). doi:10.1051/m2an:2002014
Chou, S., Huang, J.: A domain decomposition algorithm for general covolume methods for elliptic problems. J. Numer. Math. Jnma 11(3), 179–194 (2003)
Dolean, V., Nataf, F., Scheichl, R., Spillane, N.: Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math. 12(4), 391–414 (2012). doi:10.2478/cmam-2012-0027
Dryja, M., Sarkis, M.: Additive average Schwarz methods for discretization of elliptic problems with highly discontinuous coefficients. Comput. Methods Appl. Math. 10(2), 164–176 (2010)
Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357 (1983)
Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888 (2002). doi:10.1137/S0036142900368873
Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010). doi:10.1137/090751190
Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces. Multiscale Model. Simul. 8(5), 1621–1644 (2010). doi:10.1137/100790112
Graham, I.G., Lechner, P.O., Scheichl, R.: Domain decomposition for multiscale PDEs. Numer. Math. 106(4), 589–626 (2007). doi:10.1007/s00211-007-0074-1
Hackbusch, W.: On first and second order box schemes. Computing 41(4), 277–296 (1989)
Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997). doi:10.1006/jcph.1997.5682
Lin, Y., Liu, J., Yang, M.: Finite volume element methods: an overview on recent developments. Int. J. Numer. Anal. Model. Ser. B 4(1), 14–34 (2013)
Marcinkowski, L.: The mortar element method with locally nonconforming elements. BIT Numer. Math. 39(4), 716–739 (1999)
Marcinkowski, L., Rahman, T., Loneland, A., Valdman, J.: Additive Schwarz preconditioner for the general finite volume element discretization of symmetric elliptic problems. BIT Numer. Math. (2015). doi:10.1007/s10543-015-0581-x
Rahman, T., Xu, X., Hoppe, R.: Additive Schwarz methods for the Crouzeix–Raviart mortar finite element for elliptic problems with discontinuous coefficients. Numer. Math. 101(3), 551–572 (2005)
Rui, H., Bi, C.: Convergence analysis of an upwind finite volume element method with Crouzeix–Raviart element for non-selfadjoint and indefinite problems. Front. Math. China 3(4), 563–579 (2008)
Saad, Y., Schultz, M.H.: Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)
Sarkis, M.: Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements. Numer. Math. 77(3), 383–406 (1997)
Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)
Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126(4), 741–770 (2014). doi:10.1007/s00211-013-0576-y
Toselli, A., Widlund, O.B.: Domain Decomposition Methods: Algorithms and Theory, vol. 34. Springer, Berlin (2005)
Wu, H., Li, R.: Error estimates for finite volume element methods for general second-order elliptic problems. Numer. Methods Partial Differ. Equ. 19(6), 693–708 (2003). doi:10.1002/num.10068
Zhang, S.: On domain decomposition algorithms for covolume methods for elliptic problems. Comput. Methods Appl. Mech. Engrg. 196(1–3), 24–32 (2006)
Acknowledgments
The authors would like to thank Professor Petter Bjørstad and Professor Maksymilian Dryja for their valuable comments and discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
L. Marcinkowski was partially supported by the Polish Scientific Grant 2011/01/B/ST1/01179 and Chinese Academy of Science Project: 2013FFGA0009 - GJHS20140901004635677.
T. Rahman acknowledges the support from the NRC through the DAADppp project 233989.
Rights and permissions
About this article
Cite this article
Loneland, A., Marcinkowski, L. & Rahman, T. Additive average Schwarz method for a Crouzeix–Raviart finite volume element discretization of elliptic problems with heterogeneous coefficients. Numer. Math. 134, 91–118 (2016). https://doi.org/10.1007/s00211-015-0771-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-015-0771-0