Abstract
Best-of-N (BoN) Average Displacement Error (ADE)/ Final Displacement Error (FDE) is the most used metric for evaluating trajectory prediction models. Yet, the BoN does not quantify the whole generated samples, resulting in an incomplete view of the model’s prediction quality and performance. We propose a new metric, Average Mahalanobis Distance (AMD) to tackle this issue. AMD is a metric that quantifies how close the whole generated samples are to the ground truth. We also introduce the Average Maximum Eigenvalue (AMV) metric that quantifies the overall spread of the predictions. Our metrics are validated empirically by showing that the ADE/FDE is not sensitive to distribution shifts, giving a biased sense of accuracy, unlike the AMD/AMV metrics. We introduce the usage of Implicit Maximum Likelihood Estimation (IMLE) as a replacement for traditional generative models to train our model, Social-Implicit. IMLE training mechanism aligns with AMD/AMV objective of predicting trajectories that are close to the ground truth with a tight spread. Social-Implicit is a memory efficient deep model with only 5.8K parameters that runs in real time of 580 Hz and achieves competitive results (Code: https://github.com/abduallahmohamed/Social-Implicit/).
M. Elhoseiny C. Claudel—Equal advising.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)
Bütepage, J., Kjellström, H., Kragic, D.: Anticipating many futures: online human motion prediction and generation for human-robot interaction. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4563–4570. IEEE (2018)
Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449 (2019)
Cui, H., et al.: Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2090–2096. IEEE (2019)
Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1468–1476 (2018)
Gauthier, J.: Conditional generative adversarial nets for convolutional face generation. In: Class Project for Stanford CS231N: Convolutional Neural Networks for Visual Recognition, Winter semester 2014(5), 2 (2014)
Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural. Inf. Process. Syst. 27, 1–10 (2014)
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)
Huang, X., et al.: DiversityGAN: diversity-aware vehicle motion prediction via latent semantic sampling. IEEE Robot. Autom. Lett. 5(4), 5089–5096 (2020)
Ivanovic, B., Pavone, M.: The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2375–2384 (2019)
Kosaraju, V., et al.: Social-BIGAT: multimodal trajectory forecasting using bicycle-GAN and graph attention networks. arXiv preprint arXiv:1907.03395 (2019)
Laplante, J.N., Kaeser, T.P.: The continuing evolution of pedestrian walking speed assumptions. Insti. Transp. Eng. ITE J. 74(9), 32 (2004)
Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 336–345 (2017)
Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Computer Graphics Forum. vol. 26, pp. 655–664. Wiley Online Library (2007)
Li, K., Malik, J.: Implicit maximum likelihood estimation. arXiv preprint arXiv:1809.09087 (2018)
Li, X., Ying, X., Chuah, M.C.: Grip: graph-based interaction-aware trajectory prediction. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3960–3966. IEEE (2019)
Liang, M., et al.: Learning lane graph representations for motion forecasting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 541–556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_32
Limmer, M., Forster, J., Baudach, D., Schüle, F., Schweiger, R., Lensch, H.P.: Robust deep-learning-based road-prediction for augmented reality navigation systems at night. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1888–1895. IEEE (2016)
Liu, H., Wang, L.: Human motion prediction for human-robot collaboration. J. Manuf. Syst. 44, 287–294 (2017)
Liu, Y., Yan, Q., Alahi, A.: Social NCE: contrastive learning of socially-aware motion representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15118–15129 (2021)
Mahalanobis, P.C.: On the generalized distance in statistics. National Institute of Science of India (1936)
Mangalam, K., An, Y., Girase, H., Malik, J.: From goals, waypoints & paths to long term human trajectory forecasting. In: Proceedings of International Conference on Computer Vision (ICCV), October 2021
Mohamed, A., Qian, K., Elhoseiny, M., Claudel, C.: Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14424–14432 (2020)
Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 261–268. IEEE (2009)
Quehl, J., Hu, H., Taş, Ö.Ş., Rehder, E., Lauer, M.: How good is my prediction? Finding a similarity measure for trajectory prediction evaluation. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6. IEEE (2017)
Rhinehart, N., Kitani, K.M., Vernaza, P.: r2p2: a reparameterized pushforward policy for diverse, precise generative path forecasting. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 794–811. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_47
Rhinehart, N., McAllister, R., Kitani, K., Levine, S.: PRECOG: prediction conditioned on goals in visual multi-agent settings. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2821–2830 (2019)
Rudenko, A., et al.: Human motion trajectory prediction: a survey. Int. J. Robot. Res. 39(8), 895–935 (2020)
Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: Sophie: an attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1349–1358 (2019)
Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 683–700. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_40
Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. Adv. Neural. Inf. Process. Syst. 28, 3483–3491 (2015)
Tang, C., Salakhutdinov, R.R.: Multiple futures prediction. Adv. Neural. Inf. Process. Syst. 32, 15424–15434 (2019)
Tipping, M.E.: Deriving cluster analytic distance functions from gaussian mixture models. In: 1999 Ninth International Conference on Artificial Neural Networks ICANN 1999. (Conf. Publ. No. 470), vol. 2, pp. 815–820. IET (1999)
Westphal, C.: Challenges in networking to support augmented reality and virtual reality. In: IEEE ICNC (2017)
Wu, P., Chen, S., Metaxas, D.N.: MotionNet: joint perception and motion prediction for autonomous driving based on bird’s eye view maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11385–11395 (2020)
Yuan, Y., Weng, X., Ou, Y., Kitani, K.: Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting. arXiv preprint arXiv:2103.14023 (2021)
Zhao, H., Wildes, R.P.: Where are you heading? Dynamic trajectory prediction with expert goal examples. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7629–7638 (2021)
Zhu, D., Zahran, M., Li, L.E., Elhoseiny, M.: Motion forecasting with unlikelihood training in continuous space. In: 5th Annual Conference on Robot Learning (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mohamed, A., Zhu, D., Vu, W., Elhoseiny, M., Claudel, C. (2022). Social-Implicit: Rethinking Trajectory Prediction Evaluation and The Effectiveness of Implicit Maximum Likelihood Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-20047-2_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20046-5
Online ISBN: 978-3-031-20047-2
eBook Packages: Computer ScienceComputer Science (R0)