Abstract
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation. As a result, multi-agent behavior prediction has become a core component of modern human-robot interactive systems, such as self-driving cars. While there exist many methods for trajectory forecasting, most do not enforce dynamic constraints and do not account for environmental information (e.g., maps). Towards this end, we present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents while incorporating agent dynamics and heterogeneous data (e.g., semantic maps). Trajectron++ is designed to be tightly integrated with robotic planning and control frameworks; for example, it can produce predictions that are optionally conditioned on ego-agent motion plans. We demonstrate its performance on several challenging real-world trajectory forecasting datasets, outperforming a wide array of state-of-the-art deterministic and generative methods.
T. Salzmann and B. Ivanovic—Equal contribution.
T. Salzmann—Work done as a visiting student in the Autonomous Systems Lab.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
All of our source code, trained models, and data can be found online at
References
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: International Conference on Learning Representations (2015)
Battaglia, P.W., Pascanu, R., Lai, M., Rezende, D., Kavukcuoglu, K.: Interaction networks for learning about objects, relations and physics. In: Conference on Neural Information Processing Systems (2016)
Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics (2015)
Britz, D., Goldie, A., Luong, M.T., Le, Q.V.: Massive exploration of neural machine translation architectures. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1442–1451 (2017)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving (2019)
Casas, S., Gulino, C., Liao, R., Urtasun, R.: SpAGNN: spatially-aware graph neural networks for relational behavior forecasting from sensor data (2019)
Casas, S., Luo, W., Urtasun, R.: IntentNet: learning to predict intention from raw sensor data. In: Conference on Robot Learning, pp. 947–956 (2018)
Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734 (2014)
Deo, M.F., Trivedi, J.: Multi-modal trajectory prediction of surrounding vehicles with maneuver based LSTMs. In: IEEE Intelligent Vehicles Symposium (2018)
Goodfellow, I., et al.: Generative adversarial nets. In: Conference on Neural Information Processing Systems (2014)
Gupta, A., Johnson, J., Li, F., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
Gweon, H., Saxe, R.: Developmental cognitive neuroscience of theory of mind, chap. 20. In: Neural Circuit Development and Function in the Brain, pp. 367–377. Academic Press (2013). https://doi.org/10.1016/B978-0-12-397267-5.00057-1. http://www.sciencedirect.com/science/article/pii/B9780123972675000571
Hallac, D., Leskovec, J., Boyd, S.: Network lasso: clustering and optimization in large graphs. In: ACM International Conference on Knowledge Discovery and Data Mining (2015)
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)
Higgins, I., et al.: \(\upbeta \)-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations (2017)
Ho, J., Ermon, S.: Multiple futures prediction. In: Conference on Neural Information Processing Systems (2019)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)
Ivanovic, B., Pavone, M.: The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In: IEEE International Conference on Computer Vision (2019)
Ivanovic, B., Schmerling, E., Leung, K., Pavone, M.: Generative modeling of multimodal multi-human behavior. In: IEEE/RSJ International Conference on Intelligent Robots & Systems (2018)
Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on spatio-temporal graphs. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
Jain, A., et al.: Discrete residual flow for probabilistic pedestrian behavior prediction. In: Conference on Robot Learning (2019)
Jang, E., Gu, S., Poole, B.: Categorial reparameterization with Gumbel-Softmax. In: International Conference on Learning Representations (2017)
Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME J. Basic Eng. 82, 35–45 (1960)
Kesten, R., et al.: Lyft Level 5 AV Dataset 2019 (2019). https://level5.lyft.com/dataset/
Kong, J., Pfeifer, M., Schildbach, G., Borrelli, F.: Kinematic and dynamic vehicle models for autonomous driving control design. In: IEEE Intelligent Vehicles Symposium (2015)
Kosaraju, V., et al.: Social-BiGAT: multimodal trajectory forecasting using bicycle-GAN and graph attention networks. In: Conference on Neural Information Processing Systems (2019)
LaValle, S.M.: Better unicycle models. In: Planning Algorithms, p. 743. Cambridge University Press (2006)
LaValle, S.M.: A simple unicycle. In: Planning Algorithms, pp. 729–730. Cambridge University Press (2006)
Lee, N., et al.: DESIRE: distant future prediction in dynamic scenes with interacting agents. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Lee, N., Kitani, K.M.: Predicting wide receiver trajectories in American football. In: IEEE Winter Conference on Applications of Computer Vision (2016)
Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Comput. Graph. Forum 26(3), 655–664 (2007)
Morton, J., Wheeler, T.A., Kochenderfer, M.J.: Analysis of recurrent neural networks for probabilistic modeling of driver behavior. IEEE Trans. Pattern Anal. Mach. Intell. 18(5), 1289–1298 (2017)
Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)
Paszke, A., et al.: Automatic differentiation in PyTorch. In: Conference on Neural Information Processing Systems - Autodiff Workshop (2017)
Pellegrini, S., Ess, A., Schindler, K., Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: IEEE International Conference on Computer Vision (2009)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), 1st edn. MIT Press, Cambridge (2006)
Rhinehart, N., McAllister, R., Kitani, K., Levine, S.: PRECOG: prediction conditioned on goals in visual multi-agent settings. In: IEEE International Conference on Computer Vision (2019)
Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.: Human motion trajectory prediction: a survey (2019). https://arxiv.org/abs/1905.06113
Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, S.H., Savarese, S.: SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
Sadeghian, A., Legros, F., Voisin, M., Vesel, R., Alahi, A., Savarese, S.: CAR-Net: Clairvoyant attentive recurrent network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_10
Schöller, C., Aravantinos, V., Lay, F., Knoll, A.: What the constant velocity model can teach us about pedestrian motion prediction. IEEE Robot. Autom. Lett. 5, 1696–1703 (2020)
Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Conference on Neural Information Processing Systems (2015)
Thiede, L.A., Brahma, P.P.: Analyzing the variety loss in the context of probabilistic trajectory prediction. In: IEEE International Conference on Computer Vision (2019)
Thrun, S., Burgard, W., Fox, D.: The extended Kalman filter. In: Probabilistic Robotics, pp. 54–64. MIT Press (2005)
Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. In: Proceedings of the IEEE Conference on Robotics and Automation (2018)
Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 283–298 (2008)
Waymo: Safety report (2018). https://waymo.com/safety/. Accessed 9 Nov 2019
Waymo: Waymo Open Dataset: An autonomous driving dataset (2019). https://waymo.com/open/
Zeng, W., et al.: End-to-end interpretable neural motion planner. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
Zhao, S., Song, J., Ermon, S.: InfoVAE: balancing learning and inference in variational autoencoders. In: Proceedings of the AAAI Conference on Artificial Intelligence (2019)
Zhao, T., et al.: Multi-agent tensor fusion for contextual trajectory prediction. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
Acknowledgment
This work was supported in part by the Ford-Stanford Alliance. This article solely reflects the opinions and conclusions of its authors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M. (2020). Trajectron++: Dynamically-Feasible Trajectory Forecasting with Heterogeneous Data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-58523-5_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58522-8
Online ISBN: 978-3-030-58523-5
eBook Packages: Computer ScienceComputer Science (R0)