[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Video Search with CLIP and Interactive Text Query Reformulation

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13833))

Included in the following conference series:

  • 1963 Accesses

Abstract

Nowadays, deep learning based models like CLIP allow simple design of cross-modal video search systems that are able to solve many tasks considered as highly challenging several years ago. In this paper, we analyze a CLIP based search approach that focuses on situations, where users cannot find proper text queries to describe searched video segments. The approach relies on suggestions of classes for displayed intermediate result sets and thus allows users to realize missing words and ideas to describe video frames. This approach is supported with a preliminary study showing potential of the method. Based on the results, we extend a respected known-item search system for the Video Browser Showdown, where more challenging visual known-item search tasks are planned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    According to our VBS 2022 log analysis, the general context-aware ranker was almost not used at all anyway, users preferred temporal queries.

References

  1. Amato, G., et al.: VISIONE at video browser showdown 2022. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13142, pp. 543–548. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_52

    Chapter  Google Scholar 

  2. Hezel, N., Schall, K., Jung, K., Barthel, K.U.: Efficient search and browsing of large-scale video collections with Vibro. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13142, pp. 487–492. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_43

    Chapter  Google Scholar 

  3. Lokoč, J., Mejzlík, F., Souček, T., Dokoupil, P., Peška, L.: Video search with context-aware ranker and relevance feedback. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13142, pp. 505–510. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_46

    Chapter  Google Scholar 

  4. Lokoč, J., et al.: A task category space for user-centric comparative multimedia search evaluations. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13141, pp. 193–204. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98358-1_16

    Chapter  Google Scholar 

  5. Lokoč, J., Bailer, W., Schoeffmann, K., Münzer, B., Awad, G.: On influential trends in interactive video retrieval: video browser showdown 2015–2017. IEEE Trans. Multimedia 20(12), 3361–3376 (2018). https://doi.org/10.1109/TMM.2018.2830110

    Article  Google Scholar 

  6. Lokoč, J., et al.: Is the reign of interactive search eternal? findings from the video browser showdown 2020. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 17(3) (2021). https://doi.org/10.1145/3445031

  7. Peska, L., Mejzlík, F., Soucek, T., Lokoc, J.: Towards evaluating and simulating keyword queries for development of interactive known-item search systems. In: Gurrin, C., Jónsson, B.Þ., Kando, N., Schöffmann, K., Chen, Y.P., O’Connor, N.E. (eds.) Proceedings of the 2020 on International Conference on Multimedia Retrieval, ICMR 2020, Dublin, Ireland, 8–11 June 2020, pp. 281–285. ACM (2020). https://doi.org/10.1145/3372278.3390726

  8. Radford, A., et al.: Learning transferable visual models from natural language supervision. CoRR abs/2103.00020 (2021). https://arxiv.org/abs/2103.00020

  9. Rossetto, L., et al.: Interactive video retrieval in the age of deep learning-detailed evaluation of VBS 2019. IEEE Trans. Multimedia 23, 243–256 (2020). https://doi.org/10.1109/TMM.2020.2980944

    Article  Google Scholar 

  10. Rossetto, L., Gasser, R., Sauter, L., Bernstein, A., Schuldt, H.: A system for interactive multimedia retrieval evaluations. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12573, pp. 385–390. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67835-7_33

    Chapter  Google Scholar 

  11. Rossetto, L., Schuldt, H., Awad, G., Butt, A.A.: V3C – a research video collection. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11295, pp. 349–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05710-7_29

    Chapter  Google Scholar 

  12. Truong, Q.T., et al.: Marine video kit: a new marine video dataset for content-based analysis and retrieval. In: Dang-Nguyen, D., et al. (eds.) MMM 2023. LNCS, vol. 13833, pp. xx–yy. Springer, Cham (2023)

    Google Scholar 

Download references

Acknowledgment

This work has been supported by Charles University grant SVV-260588.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Peška .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lokoč, J., Vopálková, Z., Dokoupil, P., Peška, L. (2023). Video Search with CLIP and Interactive Text Query Reformulation. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13833. Springer, Cham. https://doi.org/10.1007/978-3-031-27077-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27077-2_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27076-5

  • Online ISBN: 978-3-031-27077-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics