[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3372278.3390726acmconferencesArticle/Chapter ViewAbstractPublication PagesicmrConference Proceedingsconference-collections
short-paper

Towards Evaluating and Simulating Keyword Queries for Development of Interactive Known-item Search Systems

Published: 08 June 2020 Publication History

Abstract

Searching for memorized images in large datasets (known-item search) is a challenging task due to a limited effectiveness of retrieval models as well as limited ability of users to formulate suitable queries and choose an appropriate search strategy. A popular option to approach the task is to automatically detect semantic concepts and rely on interactive specification of keywords during the search session. Nonetheless, employed instances of such search models are often set arbitrarily in existing KIS systems as comprehensive evaluations with reals users are time demanding. This paper envisions and investigates an option to simulate keyword queries in a selected "toy'' (yet competitive) keyword search model relying on a deep image classification network. Specifically, two properties of such keyword-based model are experimentally investigated with our known-item search benchmark dataset: which output transformation and ranking models are effective for the utilized classification model and whether there are some options for simulations of keyword queries. In addition to the main objective, the paper inspects also the effect of interactive query reformulations for the considered keyword search model.

References

[1]
Claudiu Cobâ rzan, Klaus Schoeffmann, Werner Bailer, Wolfgang Hü rst, Adam Blavzek, Jakub Lokovc, Stefanos Vrochidis, Kai Uwe Barthel, and Luca Rossetto. 2017. Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimedia Tools Appl., Vol. 76, 4 (2017), 5539--5571. https://doi.org/10.1007/s11042-016--3661--2
[2]
J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. 248--255. https://doi.org/10.1109/CVPR.2009.5206848
[3]
Cathal Gurrin, Klaus Schoeffmann, Hideo Joho, Andreas Leibetseder, Liting Zhou, Aaron Duane, Duc-Tien Dang-Nguyen, Michael Riegler, Luca Piras, Minh-Triet Tran, Jakub Lokovc, and Wolfgang Hürst. 2019. [Invited papers] Comparing Approaches to Interactive Lifelog Search at the Lifelog Search Challenge (LSC2018). ITE Transactions on Media Technology and Applications, Vol. 7, 2 (2019), 46--59. https://doi.org/10.3169/mta.7.46
[4]
K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770--778. https://doi.org/10.1109/CVPR.2016.90
[5]
Björn Þór Jónsson, Omar Shahbaz Khan, Dennis C. Koelma, Stevan Rudinac, Marcel Worring, and Jan Zahálka. 2020. Exquisitor at the Video Browser Showdown 2020. In MultiMedia Modeling, Yong Man Ro, Wen-Huang Cheng, Junmo Kim, Wei-Ta Chu, Peng Cui, Jung-Woo Choi, Min-Chun Hu, and Wesley De Neve (Eds.). Springer International Publishing, Cham, 796--802.
[6]
Andreas Leibetseder, Bernd Münzer, Jürgen Primus, Sabrina Kletz, and Klaus Schoeffmann. 2020. diveXplore 4.0: The ITEC Deep Interactive Video Exploration System at VBS2020. In MultiMedia Modeling, Yong Man Ro, Wen-Huang Cheng, Junmo Kim, Wei-Ta Chu, Peng Cui, Jung-Woo Choi, Min-Chun Hu, and Wesley De Neve (Eds.). Springer International Publishing, Cham, 753--759.
[7]
Xirong Li, Chaoxi Xu, Gang Yang, Zhineng Chen, and Jianfeng Dong. 2019. W2VV+: Fully Deep Learning for Ad-hoc Video Search. In Proceedings of the 27th ACM International Conference on Multimedia, MM 2019, Nice, France, October 21--25, 2019. 1786--1794. https://doi.org/10.1145/3343031.3350906
[8]
Jakub Lokoc, Gregor Kovalc'i k, Tomá s Soucek, Jaroslav Moravec, and Premysl Cech. 2019. A Framework for Effective Known-item Search in Video. In Proceedings of the 27th ACM International Conference on Multimedia, MM 2019, Nice, France, October 21--25, 2019. 1777--1785. https://doi.org/10.1145/3343031.3351046
[9]
Jakub Lokovc, Werner Bailer, Klaus Schoeffmann, Bernd Münzer, and George Awad. 2018. On Influential Trends in Interactive Video Retrieval: Video Browser Showdown 2015--2017. IEEE Trans. Multimedia, Vol. 20, 12 (2018), 3361--3376. https://doi.org/10.1109/TMM.2018.2830110
[10]
Jakub Lokovc, Gregor Kovalvcik, Bernd Münzer, Klaus Schöffmann, Werner Bailer, Ralph Gasser, Stefanos Vrochidis, Phuong Anh Nguyen, Sitapa Rujikietgumjorn, and Kai Uwe Barthel. 2019. Interactive Search or Sequential Browsing? A Detailed Analysis of the Video Browser Showdown 2018. ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, 1, Article 29 (Feb. 2019), 18 pages. https://doi.org/10.1145/3295663
[11]
Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in Vector Space. http://arxiv.org/abs/1301.3781
[12]
Phuong Anh Nguyen, Jiaxin Wu, Chong-Wah Ngo, Danny Francis, and Benoit Huet. 2020. VIREO @ Video Browser Showdown 2020. In MultiMedia Modeling, Yong Man Ro, Wen-Huang Cheng, Junmo Kim, Wei-Ta Chu, Peng Cui, Jung-Woo Choi, Min-Chun Hu, and Wesley De Neve (Eds.). Springer International Publishing, Cham, 772--777.
[13]
Ladislav Pevs ka, Gregor Kovalcík, and Jakub Lokovc. 2019. Towards Automatic Configuration of Interactive Known-Item Search Systems. In Similarity Search and Applications, Giuseppe Amato, Claudio Gennaro, Vincent Oria, and Milovs Radovanović (Eds.). Springer International Publishing, Cham, 340--347.
[14]
Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement. CoRR, Vol. abs/1804.02767 (2018). arxiv: 1804.02767 http://arxiv.org/abs/1804.02767
[15]
Luca Rossetto, Heiko Schuldt, George Awad, and Asad A. Butt. 2019. V3C - A Research Video Collection. In MultiMedia Modeling - 25th International Conference, MMM 2019, Thessaloniki, Greece, January 8--11, 2019, Proceedings, Part I. 349--360. https://doi.org/10.1007/978--3-030-05710--7_29
[16]
Loris Sauter, Mahnaz Amiri Parian, Ralph Gasser, Silvan Heller, Luca Rossetto, and Heiko Schuldt. 2020. Combining Boolean and Multimedia Retrieval in vitrivr for Large-Scale Video Search. In MultiMedia Modeling, Yong Man Ro, Wen-Huang Cheng, Junmo Kim, Wei-Ta Chu, Peng Cui, Jung-Woo Choi, Min-Chun Hu, and Wesley De Neve (Eds.). Springer International Publishing, Cham, 760--765.
[17]
A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. 2000. Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, 12 (Dec 2000), 1349--1380. https://doi.org/10.1109/34.895972
[18]
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7--12, 2015. 1--9.
[19]
Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. 2015. Learning Spatiotemporal Features with 3D Convolutional Networks. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV '15). IEEE Computer Society, Washington, DC, USA, 4489--4497. https://doi.org/10.1109/ICCV.2015.510
[20]
Kazuya Ueki, Kotaro Kikuchi, Susumu Saito, and Tetsunori Kobayashi. 2016. Waseda at TRECVID 2016: ad-hoc video search. In TRECVID 2016 Workshop, Gaithersburg, MD, USA, Vol. 24.
[21]
Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2017. Show and Tell: Lessons Learned from the 2015 MSCOCO Image Captioning Challenge. IEEE Trans. Pattern Anal. Mach. Intell., Vol. 39, 4 (2017), 652--663.
[22]
Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2017. Learning Transferable Architectures for Scalable Image Recognition. CoRR, Vol. abs/1707.07012 (2017). arxiv: 1707.07012 http://arxiv.org/abs/1707.07012

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ICMR '20: Proceedings of the 2020 International Conference on Multimedia Retrieval
June 2020
605 pages
ISBN:9781450370875
DOI:10.1145/3372278
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 June 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. interactive search models
  2. known-item search
  3. user simulations

Qualifiers

  • Short-paper

Funding Sources

  • Grantová Agentura ðeské Republiky

Conference

ICMR '20
Sponsor:

Acceptance Rates

Overall Acceptance Rate 254 of 830 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media