Abstract
Although significant progress has been made in single-image shadow detection or single-image shadow removal, only few works consider these two problems together. However, the two problems are complementary and can benefit from each other. In this work, we propose a Mask-Guided Residual Learning Network (MGRLN-Net) that jointly estimates shadow mask and shadow-free image. In particular, MGRLN-Net first generates a shadow mask, then utilizes a feature reassembling module to align the features from the shadow detection module to the shadow removal module. Finally, we leverage the learned shadow mask as guidance to generate a shadow-free image. We formulate shadow removal as a masked residual learning problem of the original shadow image. In this way, the learned shadow mask is used as guidance to produce better transitions in penumbra regions. Extensive experiments on ISTD, ISTD+, and SRD benchmark datasets demonstrate that our method outperforms current state-of-the-art approaches on both shadow detection and shadow removal tasks. Our code is available at https://github.com/LeipingJie/MGRLN-Net.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, Z., Zhu, L., Wan, L., Wang, S., Feng, W., Heng, P.A.: A multi-task mean teacher for semi-supervised shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5611–5620 (2020)
Chen, Z., Long, C., Zhang, L., Xiao, C.: CANet: a context-aware network for shadow removal. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4743–4752 (2021)
Cun, X., Pun, C.M., Shi, C.: Towards ghost-free shadow removal via dual hierarchical aggregation network and shadow matting GAN. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10680–10687 (2020)
Ding, B., Long, C., Zhang, L., Xiao, C.: ARGAN: attentive recurrent generative adversarial network for shadow detection and removal. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Finlayson, G.D., Drew, M.S., Lu, C.: Entropy minimization for shadow removal. Int. J. Comput. Vision 85(1), 35–57 (2009)
Finlayson, G.D., Hordley, S.D., Lu, C., Drew, M.S.: On the removal of shadows from images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 59–68 (2006). https://doi.org/10.1109/TPAMI.2006.18
Fu, L., et al.: Auto-exposure fusion for single-image shadow removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10571–10580 (2021)
Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of International Conference on Neural Information Processing Systems (NeurIPS), pp. 2672–2680 (2014)
Gryka, M., Terry, M., Brostow, G.J.: Learning to remove soft shadows. ACM Trans. Graph. (TOG) 34(5), 1–15 (2015)
Guo, R., Dai, Q., Hoiem, D.: Paired regions for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2956–2967 (2012)
Hu, X., Fu, C.W., Zhu, L., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. 42(11), 2795–2808 (2019)
Hu, X., Jiang, Y., Fu, C.W., Heng, P.A.: Mask-shadowGAN: learning to remove shadows from unpaired data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2472–2481 (2019)
Hu, X., Zhu, L., Fu, C.W., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7454–7462 (2018)
Inoue, N., Yamasaki, T.: Learning from synthetic shadows for shadow detection and removal. IEEE Trans. Circuits Syst. Video Technol. 31(11), 4187–4197 (2021). https://doi.org/10.1109/TCSVT.2020.3047977
Jie, L., Zhang, H.: A fast and efficient network for single image shadow detection. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2634–2638 (2022)
Jie, L., Zhang, H.: RMLANet: random multi-level attention network for shadow detection. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2022)
Jin, Y., Sharma, A., Tan, R.T.: DC-ShadowNet: single-image hard and soft shadow removal using unsupervised domain-classifier guided network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5027–5036 (2021)
Khan, S.H., Bennamoun, M., Sohel, F., Togneri, R.: Automatic feature learning for robust shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1939–1946 (2014)
Lalonde, J.-F., Efros, A.A., Narasimhan, S.G.: Detecting ground shadows in outdoor consumer photographs. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 322–335. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_24
Le, H., Samaras, D.: Shadow removal via shadow image decomposition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8578–8587 (2019)
Le, H., Samaras, D.: From shadow segmentation to shadow removal. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 264–281. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_16
Nguyen, V., Vicente, T.F.Y., Zhao, M., Hoai, M., Samaras, D.: Shadow detection with conditional generative adversarial networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4510–4518 (2017)
Qu, L., Tian, J., He, S., Tang, Y., Lau, R.W.H.: DeshadowNet: a multi-context embedding deep network for shadow removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4067–4075 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI) (2015)
Shen, L., Chua, T.W., Leman, K.: Shadow optimization from structured deep edge detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2067–2074 (2015)
Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional lstm network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems 28 (2015)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning (ICML), pp. 6105–6114 (2019)
Vicente, T.F.Y., Hoai, M., Samaras, D.: Leave-one-out kernel optimization for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 682–695 (2018)
Wang, J., Li, X., Yang, J.: Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1788–1797 (2018)
Xiao, C., She, R., Xiao, D., Ma, K.L.: Fast shadow removal using adaptive multi-scale illumination transfer. Comput. Graph. Forum 32, 6105–6114 (2019)
Yang, Q., Tan, K.H., Ahuja, N.: Shadow removal using bilateral filtering. IEEE Trans. Image Process. 21(10), 4361–4368 (2012)
Zhang, L., Zhang, Q., Xiao, C.: Shadow remover: image shadow removal based on illumination recovering optimization. IEEE Trans. Image Process. 24(11), 4623–4636 (2015)
Zheng, Q., Qiao, X., Cao, Y., Lau, R.W.: Distraction-aware shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5167–5176 (2019)
Zhu, J., Samuel, K.G., Masood, S.Z., Tappen, M.F.: Learning to recognize shadows in monochromatic natural images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 223–230 (2010)
Zhu, L., et al.: Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 122–137. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_8
Acknowledgements
This work was supported by the National Natural Science Foundation of China (62076029), Guangdong Science and Technology Department (2017A030313362), Guangdong Key Lab of AI and Multi-modal Data Processing (2020KSYS007). and internal funds of the United International College (R202012, R201802, R5201904, UICR0400025-21).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jie, L., Zhang, H. (2023). MGRLN-Net: Mask-Guided Residual Learning Network for Joint Single-Image Shadow Detection and Removal. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13843. Springer, Cham. https://doi.org/10.1007/978-3-031-26313-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-26313-2_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26312-5
Online ISBN: 978-3-031-26313-2
eBook Packages: Computer ScienceComputer Science (R0)