Abstract
The requirement for paired shadow and shadow-free images limits the size and diversity of shadow removal datasets and hinders the possibility of training large-scale, robust shadow removal algorithms. We propose a shadow removal method that can be trained using only shadow and non-shadow patches cropped from the shadow images themselves. Our method is trained via an adversarial framework, following a physical model of shadow formation. Our central contribution is a set of physics-based constraints that enables this adversarial training. Our method achieves competitive shadow removal results compared to state-of-the-art methods that are trained with fully paired shadow and shadow-free images. The advantages of our training regime are even more pronounced in shadow removal for videos. Our method can be fine-tuned on a testing video with only the shadow masks generated by a pre-trained shadow detector and outperforms state-of-the-art methods on this challenging test. We illustrate the advantages of our method on our proposed video shadow removal dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
All code, trained models, and data are available at: .
References
Arbel, E., Hel-Or, H.: Shadow removal using intensity surfaces and texture anchor points. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1202–1216 (2011)
Choi, Y., Choi, M.J., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2017)
Chuang, Y.Y., Goldman, D.B., Curless, B., Salesin, D.H., Szeliski, R.: Shadow matting and compositing. ACM Trans. Graph. 22(3), 494–500 (2003). Special Issue of SIGGRAPH 2003 Proceeding
Dare, P.: Shadow analysis in high-resolution satellite imagery of urban areas. Photogram. Eng. Remote Sens. 71, 169–177 (2005). https://doi.org/10.14358/PERS.71.2.169
Ding, B., Long, C., Zhang, L., Xiao, C.: ARGAN: attentive recurrent generative adversarial network for shadow detection and removal. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10212–10221 (2019)
Drew, M.S.: Recovery of chromaticity image free from shadows via illumination invariance. In: IEEE Workshop on Color and Photometric Methods in Computer Vision, ICCV’03, pp. 32–39 (2003)
Finlayson, G., Drew, M.S.: 4-sensor camera calibration for image representation invariant to shading, shadows, lighting, and specularities. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 473–480 (2001). https://doi.org/10.1109/ICCV.2001.937663
Finlayson, G., Hordley, S., Lu, C., Drew, M.: On the removal of shadows from images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 59–68 (2006)
Finlayson, C., Hordley, S.D., Drew, M.S.: Removing shadows from images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) Computer Vision – ECCV 2002. Lecture Notes in Computer Science, vol. 2353, pp. 823–836. Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-47979-1_55
Fredembach, C., Finlayson, G.D.: Hamiltonian path based shadow removal. In: BMVC (2005)
Gong, H., Cosker, D.: Interactive removal and ground truth for difficult shadow scenes. J. Opt. Soc. Am. A 33(9), 1798–1811 (2016). https://doi.org/10.1364/JOSAA.33.001798. http://josaa.osa.org/abstract.cfm?URI=josaa-33-9-1798
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)
Guo, R., Dai, Q., Hoiem, D.: Single-image shadow detection and removal using paired regions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2011)
Guo, R., Dai, Q., Hoiem, D.: Paired regions for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2956–2967 (2012)
Hu, X., Jiang, Y., Fu, C.W., Heng, P.A.: Mask-ShadowGAN: learning to remove shadows from unpaired data. In: ICCV (2019)
Hu, X., Wang, T., Fu, C.W., Jiang, Y., Wang, Q., Heng, P.A.: Revisiting shadow detection: a new benchmark dataset for complex world. arXiv:abs/1911.06998 (2019)
Hu, X., Zhu, L., Fu, C.W., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
KaewTrakulPong, P., Bowden, R.: An improved adaptive background mixture model for real- time tracking with shadow detection (2002)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (2015)
Le, H., Goncalves, B., Samaras, D., Lynch, H.: Weakly labeling the antarctic: the penguin colony case. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019)
Le, H., Nguyen, V., Yu, C.P., Samaras, D.: Geodesic distance histogram feature for video segmentation. In: ACCV (2016)
Le, H., Samaras, D.: Shadow removal via shadow image decomposition. In: Proceedings of the International Conference on Computer Vision (2019)
Le, H., Vicente, T.F.Y., Nguyen, V., Hoai, M., Samaras, D.: A+D Net: training a shadow detector with adversarial shadow attenuation. In: Proceedings of the European Conference on Computer Vision (2018)
Le, H., Yu, C.P., Zelinsky, G., Samaras, D.: Co-localization with category-consistent features and geodesic distance propagation. In: ICCV 2017 Workshop on CEFRL: Compact and Efficient Feature Representation and Learning in Computer Vision (2017)
Li, Y., Tang, S., Zhang, R., Zhang, Y., Li, J., Yan, S.: Asymmetric gan for unpaired image-to-image translation. IEEE Trans. Image Process. 28, 5881–5896 (2019)
Liu, F., Gleicher, M.: Texture-consistent shadow removal. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) Computer Vision – ECCV 2008. Lecture Notes in Computer Science, vol. 5305, pp. 437–450. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_32
Liu, H., Gu, X., Samaras, D.: Wasserstein GAN with quadratic transport cost. In: The IEEE International Conference on Computer Vision (ICCV) (2019)
Liu, H., Xianfeng, G., Samaras, D.: A two-step computation of the exact GAN Wasserstein distance. In: International Conference on Machine Learning, pp. 3165–3174 (2018)
Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. arXiv:abs/1703.00848 (2017)
Mescheder, L., Nowozin, S., Geiger, A.: Which training methods for GANs do actually converge? In: International Conference on Machine Learning (2018)
Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: International Conference on Machine Learning (2018)
Müller, T., Erdnüeß, B.: Brightness correction and shadow removal for video change detection with UAVs. In: Defense + Commercial Sensing (2019)
Panagopoulos, A., Wang, C., Samaras, D., Paragios, N.: Estimating shadows with the bright channel cue. In: Kutulakos, K.N. (ed.) Trends and Topics in Computer Vision – ECCV 2010. Lecture Notes in Computer Science, vol. 6554, pp. 1–12. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-35740-4_1
Panagopoulos, A., Wang, C., Samaras, D., Paragios, N.: Simultaneous cast shadows, illumination and geometry inference using hypergraphs. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 437–449 (2013). https://doi.org/10.1109/TPAMI.2012.110
Porter, T., Duff, T.: Compositing digital images. Proc. ACM SIGGRAPH Conf. Comput. Graph. 18(3), 1–12 (1984)
Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting moving shadows: algorithms and evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 25, 918–923 (2003)
Qu, L., Tian, J., He, S., Tang, Y., Lau, R.W.H.: DeshadowNet: a multi-context embedding deep network for shadow removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Shiting, W., Hong, Z.: Clustering-based shadow edge detection in a single color image. In: International Conference on Mechatronic Sciences, Electric Engineering and Computer, pp. 1038–1041 (2013). https://doi.org/10.1109/MEC.2013.6885215
Shor, Y., Lischinski, D.: The shadow meets the mask: pyramid-based shadow removal. Comput. Graph. Forum 27(2), 577–586 (2008)
Smith, A.R., Blinn, J.F.: Blue screen matting. In: Proceedings of the ACM SIGGRAPH Conference on Computer Graphics (1996)
Su, N., Zhang, Y., Tian, S., Yan, Y., Miao, X.: Shadow detection and removal for occluded object information recovery in urban high-resolution panchromatic satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9, 2568–2582 (2016)
Thanh-Tung, H., Tran, T., Venkatesh, S.: Improving generalization and stability of generative adversarial networks. In: International Conference on Learning Representations (2019)
Vicente, T.F.Y., Hoai, M., Samaras, D.: Noisy label recovery for shadow detection in unfamiliar domains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
Vicente, T.F.Y., Hoai, M., Samaras, D.: Leave-one-out kernel optimization for shadow detection and removal. IEEE Transactions on Pattern Analysis and Machine Intelligence 40(3), 682–695 (2018)
Vicente, T.F.Y., Hou, L., Yu, C.P., Hoai, M., Samaras, D.: Large-scale training of shadow detectors with noisily-annotated shadow examples. In: Proceedings of the European Conference on Computer Vision (2016)
Vicente, T.F.Y., Samaras, D.: Single image shadow removal via neighbor-based region relighting. In: Proceedings of the European Conference on Computer Vision Workshops (2014)
Wang, J., Li, X., Yang, J.: Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Wang, T., Hu, X., Wang, Q., Heng, P.A., Fu, C.W.: Instance shadow detection. In: CVPR (2020)
Wright, S.: Digital Compositing for Film and Video. Focal Press (2001)
Wu, Q., Zhang, W.,Vijay Kumar, B.V.K.: Strong shadow removal via patch-based shadow edge detection. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2177–2182 (2012)
Wu, T.P., Tang, C.K.: A Bayesian approach for shadow extraction from a single image. In: Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1 1, pp. 480–487 (2005)
Wu, T.P., Tang, C.K., Brown, M.S., Shum, H.Y.: Natural shadow matting. ACM Trans. Graph. 26, 2 (2007). https://doi.org/10.1145/1243980.1243982. http://doi.acm.org/10.1145/1243980.1243982
Yang, Q., Tan, K., Ahuja, N.: Shadow removal using bilateral filtering. IEEE Trans. Image Process. 21, 4361–4368 (2012)
Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2868–2876 (2017)
Zhang, L., Long, C., Zhang, X., Xiao, C.: RIS-GAN: explore residual and illumination with generative adversarial networks for shadow removal. In: AAAI Conference on Artificial Intelligence (AAAI) (2020)
Zhang, W., Zhao, X., Morvan, J.M., Chen, L.: Improving shadow suppression for illumination robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41, 611–624 (2019)
Zheng, Q., Qiao, X., Cao, Y., Lau, R.W.H.: Distraction-aware shadow detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5162–5171 (2019)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)
Zhu, L., et al.: Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In: Proceedings of the European Conference on Computer Vision (2018)
Acknowledgements
This work was partially supported by the Partner University Fund, the SUNY2020 ITSC, and a gift from Adobe. Computational support provided by IACS and a GPU donation from NVIDIA. We thank Kumara Kahatapitiya and Cristina Mata for assistance with the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 19388 KB)
Supplementary material 3 (mp4 19313 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Le, H., Samaras, D. (2020). From Shadow Segmentation to Shadow Removal. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12356. Springer, Cham. https://doi.org/10.1007/978-3-030-58621-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-58621-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58620-1
Online ISBN: 978-3-030-58621-8
eBook Packages: Computer ScienceComputer Science (R0)