Abstract
Even though 3D face reconstruction has achieved impressive progress, most orthogonal projection-based face reconstruction methods can not achieve accurate and consistent reconstruction results when the face is very close to the camera due to the distortion under the perspective projection. In this paper, we propose to simultaneously reconstruct 3D face mesh in the world space and predict 2D face landmarks on the image plane to address the problem of perspective 3D face reconstruction. Based on the predicted 3D vertices and 2D landmarks, the 6DoF (6 Degrees of Freedom) face pose can be easily estimated by the PnP solver to represent perspective projection. Our approach achieves 1st place on the leader-board of the ECCV 2022 WCPA challenge and our model is visually robust under different identities, expressions and poses. The training code and models are released to facilitate future research. https://github.com/deepinsight/insightface/tree/master/reconstruction/jmlr.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
An, X., et al.: Killing two birds with one stone: Efficient and robust training of face recognition CNNs by partial fc. In: CVPR (2022)
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH (1999)
Booth, J., Roussos, A., Ponniah, A., Dunaway, D., Zafeiriou, S.: Large scale 3D morphable models. Int. J. Ccomput. Vis. 126, 233–254 (2018)
Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: ICCV (2017)
Chaudhuri, B., Vesdapunt, N., Wang, B.: Joint face detection and facial motion retargeting for multiple faces. In: CVPR (2019)
Deng, J., Guo, J., Liu, T., Gong, M., Zafeiriou, S.: Sub-center ArcFace: boosting face recognition by large-scale noisy web faces. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 741–757. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_43
Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: Retinaface: Single-shot multi-level face localisation in the wild. In: CVPR (2020)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: CVPR (2019)
Deng, J., Guo, J., Yang, J., Lattas, A., Zafeiriou, S.: Variational prototype learning for deep face recognition. In: CVPR (2021)
Deng, J., et al.: The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking. Int. J. Comput. Vis. 127, 599–624 (2019)
Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3D face reconstruction with weakly-supervised learning: from single image to image set. In: CVPR Workshops (2019)
Feng, Y., Feng, H., Black, M.J., Bolkart, T.: Learning an animatable detailed 3D face model from in-the-wild images. In: SIGGRAPH (2021)
Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3D face reconstruction and dense alignment with position map regression network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 557–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_33
Gecer, B., Ploumpis, S., Kotsia, I., Zafeiriou, S.: Ganfit: Generative adversarial network fitting for high fidelity 3d face reconstruction. In: CVPR (2019)
Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., Freeman, W.T.: Unsupervised training for 3D morphable model regression. In: CVPR (2018)
Guo, J., Deng, J., Lattas, A., Zafeiriou, S.: Sample and computation redistribution for efficient face detection. In: ICLR (2022)
Güler, R.A., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S., Kokkinos, I.: Densereg: fully convolutional dense shape regression in-the-wild. In: CVPR (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Jackson, A.S., Bulat, A., Argyriou, V., Tzimiropoulos, G.: Large pose 3D face reconstruction from a single image via direct volumetric CNN regression. In: ICCV (2017)
Kao, Y., et al.: Single-image 3D face reconstruction under perspective projection. arXiv:2205.04126 (2022)
Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for augmented reality: a hands-on survey. IEEE Trans. Visual. Comput. Graph. 22, 2633–2651 (2015)
Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: CVPR (2020)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)
Tran, A.T., Hassner, T., Masi, I., Medioni, G.: Regressing robust and discriminative 3D morphable models with a very deep neural network. In: CVPR (2017)
Tran, L., Liu, X.: Nonlinear 3D face morphable model. In: CVPR (2018)
Wood, E., et al.: 3D face reconstruction with dense landmarks. In: In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision– ECCV 2022. ECCV 2022. LNCS, vol .13673. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-19778-9_10
Zhou, Y., Deng, J., Kotsia, I., Zafeiriou, S.: Dense 3D face decoding over 2500fps: Joint texture & shape convolutional mesh decoders. In: CVPR (2019)
Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3D solution. In: CVPR (2016)
Zhu, Z., et al.: Webface260m: a benchmark for million-scale deep face recognition. Trans. Pattern Anal. Mach. Intell. (2022)
Zhu, Z., et al.: Webface260m: a benchmark unveiling the power of million-scale deep face recognition. In: CVPR (2021)
Zielonka, W., Bolkart, T., Thies, J.: Towards metrical reconstruction of human faces. In: ECCV (2022). https://doi.org/10.1007/978-3-031-19778-9_15
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Guo, J., Yu, J., Lattas, A., Deng, J. (2023). Perspective Reconstruction of Human Faces by Joint Mesh and Landmark Regression. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-25072-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25071-2
Online ISBN: 978-3-031-25072-9
eBook Packages: Computer ScienceComputer Science (R0)