[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Perspective Reconstruction of Human Faces by Joint Mesh and Landmark Regression

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

Even though 3D face reconstruction has achieved impressive progress, most orthogonal projection-based face reconstruction methods can not achieve accurate and consistent reconstruction results when the face is very close to the camera due to the distortion under the perspective projection. In this paper, we propose to simultaneously reconstruct 3D face mesh in the world space and predict 2D face landmarks on the image plane to address the problem of perspective 3D face reconstruction. Based on the predicted 3D vertices and 2D landmarks, the 6DoF (6 Degrees of Freedom) face pose can be easily estimated by the PnP solver to represent perspective projection. Our approach achieves 1st place on the leader-board of the ECCV 2022 WCPA challenge and our model is visually robust under different identities, expressions and poses. The training code and models are released to facilitate future research. https://github.com/deepinsight/insightface/tree/master/reconstruction/jmlr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, X., et al.: Killing two birds with one stone: Efficient and robust training of face recognition CNNs by partial fc. In: CVPR (2022)

    Google Scholar 

  2. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH (1999)

    Google Scholar 

  3. Booth, J., Roussos, A., Ponniah, A., Dunaway, D., Zafeiriou, S.: Large scale 3D morphable models. Int. J. Ccomput. Vis. 126, 233–254 (2018)

    Google Scholar 

  4. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: ICCV (2017)

    Google Scholar 

  5. Chaudhuri, B., Vesdapunt, N., Wang, B.: Joint face detection and facial motion retargeting for multiple faces. In: CVPR (2019)

    Google Scholar 

  6. Deng, J., Guo, J., Liu, T., Gong, M., Zafeiriou, S.: Sub-center ArcFace: boosting face recognition by large-scale noisy web faces. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 741–757. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_43

    Chapter  Google Scholar 

  7. Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: Retinaface: Single-shot multi-level face localisation in the wild. In: CVPR (2020)

    Google Scholar 

  8. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: CVPR (2019)

    Google Scholar 

  9. Deng, J., Guo, J., Yang, J., Lattas, A., Zafeiriou, S.: Variational prototype learning for deep face recognition. In: CVPR (2021)

    Google Scholar 

  10. Deng, J., et al.: The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking. Int. J. Comput. Vis. 127, 599–624 (2019)

    Google Scholar 

  11. Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3D face reconstruction with weakly-supervised learning: from single image to image set. In: CVPR Workshops (2019)

    Google Scholar 

  12. Feng, Y., Feng, H., Black, M.J., Bolkart, T.: Learning an animatable detailed 3D face model from in-the-wild images. In: SIGGRAPH (2021)

    Google Scholar 

  13. Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3D face reconstruction and dense alignment with position map regression network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 557–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_33

    Chapter  Google Scholar 

  14. Gecer, B., Ploumpis, S., Kotsia, I., Zafeiriou, S.: Ganfit: Generative adversarial network fitting for high fidelity 3d face reconstruction. In: CVPR (2019)

    Google Scholar 

  15. Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., Freeman, W.T.: Unsupervised training for 3D morphable model regression. In: CVPR (2018)

    Google Scholar 

  16. Guo, J., Deng, J., Lattas, A., Zafeiriou, S.: Sample and computation redistribution for efficient face detection. In: ICLR (2022)

    Google Scholar 

  17. Güler, R.A., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S., Kokkinos, I.: Densereg: fully convolutional dense shape regression in-the-wild. In: CVPR (2017)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  19. Jackson, A.S., Bulat, A., Argyriou, V., Tzimiropoulos, G.: Large pose 3D face reconstruction from a single image via direct volumetric CNN regression. In: ICCV (2017)

    Google Scholar 

  20. Kao, Y., et al.: Single-image 3D face reconstruction under perspective projection. arXiv:2205.04126 (2022)

  21. Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for augmented reality: a hands-on survey. IEEE Trans. Visual. Comput. Graph. 22, 2633–2651 (2015)

    Google Scholar 

  22. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: CVPR (2020)

    Google Scholar 

  23. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  24. Tran, A.T., Hassner, T., Masi, I., Medioni, G.: Regressing robust and discriminative 3D morphable models with a very deep neural network. In: CVPR (2017)

    Google Scholar 

  25. Tran, L., Liu, X.: Nonlinear 3D face morphable model. In: CVPR (2018)

    Google Scholar 

  26. Wood, E., et al.: 3D face reconstruction with dense landmarks. In: In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision– ECCV 2022. ECCV 2022. LNCS, vol .13673. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-19778-9_10

  27. Zhou, Y., Deng, J., Kotsia, I., Zafeiriou, S.: Dense 3D face decoding over 2500fps: Joint texture & shape convolutional mesh decoders. In: CVPR (2019)

    Google Scholar 

  28. Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3D solution. In: CVPR (2016)

    Google Scholar 

  29. Zhu, Z., et al.: Webface260m: a benchmark for million-scale deep face recognition. Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  30. Zhu, Z., et al.: Webface260m: a benchmark unveiling the power of million-scale deep face recognition. In: CVPR (2021)

    Google Scholar 

  31. Zielonka, W., Bolkart, T., Thies, J.: Towards metrical reconstruction of human faces. In: ECCV (2022). https://doi.org/10.1007/978-3-031-19778-9_15

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankang Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, J., Yu, J., Lattas, A., Deng, J. (2023). Perspective Reconstruction of Human Faces by Joint Mesh and Landmark Regression. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics