[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

3D Face Reconstruction with Dense Landmarks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Landmarks often play a key role in face analysis, but many aspects of identity or expression cannot be represented by sparse landmarks alone. Thus, in order to reconstruct faces more accurately, landmarks are often combined with additional signals like depth images or techniques like differentiable rendering. Can we keep things simple by just using more landmarks? In answer, we present the first method that accurately predicts 10\(\times \) as many landmarks as usual, covering the whole head, including the eyes and teeth. This is accomplished using synthetic training data, which guarantees perfect landmark annotations. By fitting a morphable model to these dense landmarks, we achieve state-of-the-art results for monocular 3D face reconstruction in the wild. We show that dense landmarks are an ideal signal for integrating face shape information across frames by demonstrating accurate and expressive facial performance capture in both monocular and multi-view scenarios. Finally, our method is highly efficient: we can predict dense landmarks and fit our 3D face model at over 150FPS on a single CPU thread. Please see our website: https://microsoft.github.io/DenseLandmarks/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alp Güler, R., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S., Kokkinos, I.: DenseReg: fully convolutional dense shape regression in-the-wild. In: CVPR (2017)

    Google Scholar 

  2. Bagdanov, A.D., Del Bimbo, A., Masi, I.: The Florence 2D/3D hybrid face dataset. In: Workshop on Human Gesture and Behavior Understanding. ACM (2011)

    Google Scholar 

  3. Bai, Z., Cui, Z., Liu, X., Tan, P.: Riggable 3D face reconstruction via in-network optimization. In: CVPR (2021)

    Google Scholar 

  4. Beeler, T., Bickel, B., Beardsley, P., Sumner, B., Gross, M.: High-quality single-shot capture of facial geometry. In: ACM Transactions on Graphics (2010)

    Google Scholar 

  5. Beeler, T., et al.: High-quality passive facial performance capture using anchor frames. In: ACM Transactions on Graphics (2011)

    Google Scholar 

  6. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Computer Graphics and Interactive Techniques (1999)

    Google Scholar 

  7. Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. TPAMI 25(9), 1063–1074 (2003)

    Article  Google Scholar 

  8. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3d human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  9. Bradley, D., Heidrich, W., Popa, T., Sheffer, A.: High resolution passive facial performance capture. In: ACM Transactions on Graphics, vol. 29, no. 4 (2010)

    Google Scholar 

  10. Browatzki, B., Wallraven, C.: 3FabRec: Fast Few-shot Face alignment by Reconstruction. In: CVPR (2020)

    Google Scholar 

  11. Bulat, A., Sanchez, E., Tzimiropoulos, G.: Subpixel heatmap regression for facial landmark Localization. In: BMVC (2021)

    Google Scholar 

  12. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: ICCV (2017)

    Google Scholar 

  13. Cao, C., Chai, M., Woodford, O., Luo, L.: Stabilized real-time face tracking via a learned dynamic rigidity prior. ACM Trans. Graph. 37(6), 1–11 (2018)

    Google Scholar 

  14. Chandran, P., Bradley, D., Gross, M., Beeler, T.: Semantic deep face models. In: International Conference on 3D Vision (3DV) (2020)

    Google Scholar 

  15. Cong, M., Lan, L., Fedkiw, R.: Local geometric indexing of high resolution data for facial reconstruction from sparse markers. CoRR abs/1903.00119 (2019). www.arxiv.org/abs/1903.00119

  16. Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: RetinaFace: single-shot multi-level face localisation in the wild. In: CVPR (2020)

    Google Scholar 

  17. Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3d face reconstruction with weakly-supervised learning: from single image to image set. In: CVPR Workshops (2019)

    Google Scholar 

  18. Dib, A., et al.: Practical face reconstruction via differentiable ray tracing. Comput. Graph. Forum 40(2), 153–164 (2021)

    Article  Google Scholar 

  19. Dib, A., Thebault, C., Ahn, J., Gosselin, P.H., Theobalt, C., Chevallier, L.: Towards high fidelity monocular face reconstruction with rich reflectance using self-supervised learning and ray tracing. In: CVPR (2021)

    Google Scholar 

  20. Dou, P., Kakadiaris, I.A.: Multi-view 3D face reconstruction with deep recurrent neural networks. Image Vis. Comput. 80, 80–91 (2018)

    Article  Google Scholar 

  21. Dou, P., Shah, S.K., Kakadiaris, I.A.: End-to-end 3D face reconstruction with deep neural networks. In: CVPR (2017)

    Google Scholar 

  22. Falcon, W., et al.: Pytorch lightning 3(6) (2019). GitHub. Note. https://github.com/PyTorchLightning/pytorch-lightning

  23. Feng, Y., Feng, H., Black, M.J., Bolkart, T.: Learning an animatable detailed 3D face model from in-the-wild images. ACM Trans. Graph. (ToG) 40(4), 1–13 (2021)

    Article  Google Scholar 

  24. Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3d face reconstruction and dense alignment with position map regression network. In: ECCV (2018)

    Google Scholar 

  25. Garrido, P., et al.: Reconstruction of personalized 3d face rigs from monocular video. ACM Trans. Graph. 35(3), 1–15 (2016)

    Article  Google Scholar 

  26. Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., Freeman, W.T.: Unsupervised training for 3d morphable model regression. In: CVPR (2018)

    Google Scholar 

  27. Gerig, T., et al.: Morphable face models-an open framework. In: Automatic Face & Gesture Recognition (FG). IEEE (2018)

    Google Scholar 

  28. Grishchenko, I., Ablavatski, A., Kartynnik, Y., Raveendran, K., Grundmann, M.: Attention mesh: high-fidelity face mesh prediction in real-time. In: CVPR Workshops (2020)

    Google Scholar 

  29. Güler, R.A., Neverova, N., Kokkinos, I.: Densepose: dense human pose estimation in the wild. In: CVPR (2018)

    Google Scholar 

  30. Guo, J., Zhu, X., Yang, Y., Yang, F., Lei, Z., Li, S.Z.: Towards fast, accurate and stable 3d dense face alignment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 152–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_10

    Chapter  Google Scholar 

  31. Guo, Y., Cai, J., Jiang, B., Zheng, J., et al.: Cnn-based real-time dense face reconstruction with inverse-rendered photo-realistic face images. TPAMI 41(6), 1294–1307 (2018)

    Article  Google Scholar 

  32. Han, S., et al.: Megatrack: monochrome egocentric articulated hand-tracking for virtual reality. ACM Trans. Graph. (TOG) 39(4), 1–87 (2020)

    Article  Google Scholar 

  33. Hassner, T., Harel, S., Paz, E., Enbar, R.: Effective face frontalization in unconstrained images. In: CVPR (2015)

    Google Scholar 

  34. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  35. Jeni, L.A., Cohn, J.F., Kanade, T.: Dense 3D face alignment from 2D videos in real-time. In: Automatic Face and Gesture Recognition (FG). IEEE (2015)

    Google Scholar 

  36. Kartynnik, Y., Ablavatski, A., Grishchenko, I., Grundmann, M.: Real-time facial surface geometry from monocular video on mobile GPUs. In: CVPR Workshops (2019)

    Google Scholar 

  37. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  38. Kumar, A., et al.: Luvli face alignment: estimating landmarks’ location, uncertainty, and visibility likelihood. In: CVPR (2020)

    Google Scholar 

  39. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH (2000)

    Google Scholar 

  40. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. In: ACM Transactions on Graphics, (Proceedings SIGGRAPH Asia) (2017)

    Google Scholar 

  41. Li, Y., Yang, S., Zhang, S., Wang, Z., Yang, W., Xia, S.T., Zhou, E.: Is 2d heatmap representation even necessary for human pose estimation? (2021)

    Google Scholar 

  42. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1), 503–528 (1989). https://doi.org/10.1007/BF01589116

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, F., Zhu, R., Zeng, D., Zhao, Q., Liu, X.: Disentangling features in 3D face shapes for joint face reconstruction and recognition. In: CVPR (2018)

    Google Scholar 

  44. Liu, Y., Jourabloo, A., Ren, W., Liu, X.: Dense face alignment. In: ICCV Workshops (2017)

    Google Scholar 

  45. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)

    Google Scholar 

  46. Morales, A., Piella, G., Sukno, F.M.: Survey on 3d face reconstruction from uncalibrated images. Comput. Sci. Rev. 40, 100400 (2021)

    Article  Google Scholar 

  47. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  48. Piotraschke, M., Blanz, V.: Automated 3D face reconstruction from multiple images using quality measures. In: CVPR (2016)

    Google Scholar 

  49. Popa, T., South-Dickinson, I., Bradley, D., Sheffer, A., Heidrich, W.: Globally consistent space-time reconstruction. Comput. Graph. Forum 29(5), 1633–1642 (2010)

    Article  Google Scholar 

  50. Richardson, E., Sela, M., Kimmel, R.: 3D face reconstruction by learning from synthetic data. In: 3DV. IEEE (2016)

    Google Scholar 

  51. Richardson, E., Sela, M., Or-El, R., Kimmel, R.: Learning detailed face reconstruction from a single image. In: CVPR (2017)

    Google Scholar 

  52. Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: database and results. Image Vis. Computi. (IMAVIS) 47, 3–18 (2016)

    Article  Google Scholar 

  53. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenet V2: Inverted residuals and linear bottlenecks. In: CVPR (2018)

    Google Scholar 

  54. Sanyal, S., Bolkart, T., Feng, H., Black, M.: Learning to regress 3d face shape and expression from an image without 3d supervision. In: CVPR (2019)

    Google Scholar 

  55. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: CVPR (2006)

    Google Scholar 

  56. Sela, M., Richardson, E., Kimmel, R.: Unrestricted facial geometry reconstruction using image-to-image translation. In: ICCV (2017)

    Google Scholar 

  57. Shang, J.: Self-supervised monocular 3d face reconstruction by occlusion-aware multi-view geometry consistency. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 53–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_4

    Chapter  Google Scholar 

  58. Taylor, J., et al.: Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences. ACM Trans. Graph. (ToG) 35(4), 1–12 (2016)

    Article  Google Scholar 

  59. Taylor, J., Shotton, J., Sharp, T., Fitzgibbon, A.: The vitruvian manifold: inferring dense correspondences for one-shot human pose estimation. In: CVPR (2012)

    Google Scholar 

  60. Tewari, A., et al.: FML: face model learning from videos. In: CVPR (2019)

    Google Scholar 

  61. Tewari, A., et al: Self-supervised multi-level face model learning for monocular reconstruction at over 250 Hz. In: CVPR (2018)

    Google Scholar 

  62. Tewari, A., et al.: Mofa: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: ICCV Workshops (2017)

    Google Scholar 

  63. Thies, J., Zollhöfer, M., Nießner, M., Valgaerts, L., Stamminger, M., Theobalt, C.: Real-time expression transfer for facial reenactment. ACM Trans. Graph. 34(6), 1–183 (2015)

    Article  Google Scholar 

  64. Thies, J., Zollhöfer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: CVPR (2016)

    Google Scholar 

  65. Tran, L., Liu, F., Liu, X.: Towards high-fidelity nonlinear 3D face morphable model. In: CVPR (2019)

    Google Scholar 

  66. Tran, L., Liu, X.: Nonlinear 3d face morphable model. In: CVPR (2018)

    Google Scholar 

  67. Tuan Tran, A., Hassner, T., Masi, I., Medioni, G.: Regressing robust and discriminative 3D morphable models with a very deep neural network. In: CVPR (2017)

    Google Scholar 

  68. Wang, X., Bo, L., Fuxin, L.: Adaptive wing loss for robust face alignment via heatmap regression. In: ICCV (2019)

    Google Scholar 

  69. Wightman, R.: Pytorch image models (2019). https://www.github.com/rwightman/pytorch-image-models, https://doi.org/10.5281/zenodo.4414861

  70. Wood, E., et al.: Fake it till you make it: Face analysis in the wild using synthetic data alone (2021)

    Google Scholar 

  71. Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., Zhou, Q.: Look at boundary: a boundary-aware face alignment algorithm. In: CVPR (2018)

    Google Scholar 

  72. Yi, H., et al.: MMFace: a multi-metric regression network for unconstrained face reconstruction. In: CVPR (2019)

    Google Scholar 

  73. Yoon, J.S., Shiratori, T., Yu, S.I., Park, H.S.: Self-supervised adaptation of high-fidelity face models for monocular performance tracking. In: CVPR (2019)

    Google Scholar 

  74. Zhou, Y., Deng, J., Kotsia, I., Zafeiriou, S.: Dense 3d face decoding over 2500fps: joint texture & shape convolutional mesh decoders. In: CVPR (2019)

    Google Scholar 

  75. Zhu, M., Shi, D., Zheng, M., Sadiq, M.: Robust facial landmark detection via occlusion-adaptive deep networks. In: CVPR (2019)

    Google Scholar 

  76. Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3d solution. In: CVPR (2016)

    Google Scholar 

  77. Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3d solution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 146–155 (2016)

    Google Scholar 

  78. Zollhöfer, M., et al.: State of the art on monocular 3d face reconstruction, tracking, and applications. Comput. Graph. Forum 37(2), 523–550 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Chirag Raman and Jamie Shotton for their contributions, and Jiaolong Yang and Timo Bolkart for help with evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erroll Wood .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18084 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wood, E. et al. (2022). 3D Face Reconstruction with Dense Landmarks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19778-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19777-2

  • Online ISBN: 978-3-031-19778-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics