[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Classifying Sport-Related Human Activity from Thermal Vision Sensors Using CNN and LSTM

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13373))

Included in the following conference series:

Abstract

In this work, we describe a classification of five sport-related human activities which are sensed by a thermal vision sensor. First, we have collected several sport sessions of an inhabitant while developing: push-ups, sit-ups, jumping jacks, squats and planks. Second, we develop an ad-hoc augmentation of data to increase the sturdiness of the data collection and reduce overfitting. Third, a Deep Learning model has been evaluated to compute a sequence of images from the user in order to estimate the activity. A CNN extracts relavant features from spatial domain and LSTM network models the sequence of images to compute the final classification. The results show an encouraging performance and quick learning capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: Internet of things (iot) communication protocols. In: 2017 8th International conference on information technology (ICIT), pp. 685–690. IEEE (2017)

    Google Scholar 

  2. Cireşan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: High-performance neural networks for visual object classification. arXiv preprint arXiv:1102.0183 (2011)

  3. Dang, L.M., Min, K., Wang, H., Piran, M.J., Lee, C.H., Moon, H.: Sensor-based and vision-based human activity recognition: a comprehensive survey. Pattern Recogn. 108, 107561 (2020)

    Article  Google Scholar 

  4. De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-based datasets for human activity recognition-a systematic review of literature. IEEE Access 6, 59192–59210 (2018)

    Article  Google Scholar 

  5. Gochoo, M., Tan, T.H., Batjargal, T., Seredin, O., Huang, S.C.: Device-free non-privacy invasive indoor human posture recognition using low-resolution infrared sensor-based wireless sensor networks and dcnn. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2311–2316. IEEE (2018)

    Google Scholar 

  6. Gochoo, M., et al.: Novel IoT-based privacy-preserving yoga posture recognition system using low-resolution infrared sensors and deep learning. IEEE Internet Things J. 6(4), 7192–7200 (2019)

    Article  Google Scholar 

  7. Griffiths, E., Assana, S., Whitehouse, K.: Privacy-preserving image processing with binocular thermal cameras. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 1(4), 1–25 (2018)

    Article  Google Scholar 

  8. Han, J., Bhanu, B.: Human activity recognition in thermal infrared imagery. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005)-Workshops, p. 17. IEEE (2005)

    Google Scholar 

  9. Hiriyannaiah, S., Akanksh, B.S., Koushik, A.S., Siddesh, G.M., Srinivasa, K.G.: Deep learning for multimedia data in IoT. In: Tanwar, S., Tyagi, S., Kumar, N. (eds.) Multimedia Big Data Computing for IoT Applications. ISRL, vol. 163, pp. 101–129. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8759-3_4

    Chapter  Google Scholar 

  10. Kong, X., Meng, Z., Meng, L., Tomiyama, H.: A privacy protected fall detection IoT system for elderly persons using depth camera. In: 2018 International Conference on Advanced Mechatronic Systems (ICAMechS), pp. 31–35. IEEE (2018)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1–9 (2012)

    Google Scholar 

  12. Martínez-González, A., Villamizar, M., Canévet, O., Odobez, J.M.: Efficient convolutional neural networks for depth-based multi-person pose estimation. IEEE Trans. Circ. Syst. Video Technol. 30(11), 4207–4221 (2019)

    Article  Google Scholar 

  13. Medina-Quero, J., Zhang, S., Nugent, C., Espinilla, M.: Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition. Expert Syst. Appl. 114, 441–453 (2018)

    Article  Google Scholar 

  14. Nadeem, A., Jalal, A., Kim, K.: Automatic human posture estimation for sport activity recognition with robust body parts detection and entropy markov model. Multimedia Tools Appl. 80(14), 21465–21498 (2021). https://doi.org/10.1007/s11042-021-10687-5

    Article  Google Scholar 

  15. Nasiri, S., Khosravani, M.R.: Progress and challenges in fabrication of wearable sensors for health monitoring. Sens. Actuators A: Phys. 312, 112105 (2020)

    Article  Google Scholar 

  16. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Article  Google Scholar 

  17. Polo-Rodriguez, A., Vilchez Chiachio, J.M., Paggetti, C., Medina-Quero, J.: Ambient sound recognition of daily events by means of convolutional neural networks and fuzzy temporal restrictions. Appl. Sci. 11(15), 6978 (2021)

    Article  Google Scholar 

  18. Ramasamy Ramamurthy, S., Roy, N.: Recent trends in machine learning for human activity recognition-a survey. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 8(4), e1254 (2018)

    Google Scholar 

  19. Sixsmith, A., Johnson, N.: A smart sensor to detect the falls of the elderly. IEEE Perv. Comput. 3(2), 42–47 (2004)

    Article  Google Scholar 

  20. Sozykin, K., Protasov, S., Khan, A., Hussain, R., Lee, J.: Multi-label class-imbalanced action recognition in hockey videos via 3d convolutional neural networks. In: 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 146–151. IEEE (2018)

    Google Scholar 

  21. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019)

    Article  Google Scholar 

  22. Yadav, S.K., Tiwari, K., Pandey, H.M., Akbar, S.A.: A review of multimodal human activity recognition with special emphasis on classification, applications, challenges and future directions. Knowl.-Based Syst. 223, 106970 (2021)

    Article  Google Scholar 

  23. Yamashita, T., Watasue, T., Yamauchi, Y., Fujiyoshi, H.: Improving quality of training samples through exhaustless generation and effective selection for deep convolutional neural networks. In: VISAPP, no. 2, pp. 228–235 (2015)

    Google Scholar 

  24. Zhang, C., Yang, F., Li, G., Zhai, Q., Jiang, Y., Xuan, D.: Mv-sports: a motion and vision sensor integration-based sports analysis system. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 1070–1078. IEEE (2018)

    Google Scholar 

  25. Zhang, S., et al.: Deep learning in human activity recognition with wearable sensors: a review on advances. Sensors 22(4), 1476 (2022)

    Article  Google Scholar 

  26. Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activity recognition using vision-based method. J. Healthcare Eng. 2017 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Polo-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Polo-Rodriguez, A., Montoro-Lendinez, A., Espinilla, M., Medina-Quero, J. (2022). Classifying Sport-Related Human Activity from Thermal Vision Sensors Using CNN and LSTM. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics