[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computational Model for Fluid and Elastic Solid Interaction Based on Symmetric Hyperbolic Thermodynamically Compatible Systems Theory

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 (ICCSA 2022)

Abstract

A computational model of interaction of a compressible fluid and deformable elastic solid is presented. The model is derived from the general solid-fluid two-phase mixture model and its derivation is based on the Symmetric Hyperbolic Thermodynamically Compatible (SHTC) systems theory. The governing equations form a symmetric hyperbolic system of partial differential equations of the first order, the solutions of which satisfy the thermodynamic law of conservation of energy. These properties allow the direct application of advanced high accuracy computational methods to solve model equations and ensure the reliability of numerically obtained solutions. Some preliminary results of numerical simulation are presented, showing the applicability of the model for studying complex problems of the solid-fluid interaction.

The development of the model is supported by the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0008), implementation of numerical methods and simulations are supported by the Russian Science Foundation (project no. 19-77-20004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Peksen, M.: Multiphysics modelling of interactions in systems. In: Peksen, M. (ed.) Multiphysics Modelling, pp. 139–159. Academic Press, Cambridge (2018)

    Chapter  Google Scholar 

  2. Maltsev, V., Skote, M., Tsoutsanis, P.: High-order methods for diffuse-interface models in compressible multi-medium flows: a review. Phys. Fluids 34, 021301 (2022)

    Article  Google Scholar 

  3. Godunov, S.K., Romenskii, E.I.: Elements of Continuum Mechanics and Conservation Laws. Kluwer Academic/Plenum Publishers, New York (2003)

    Book  Google Scholar 

  4. Godunov, S.K., Mikhaîlova, T.Y., Romenskii, E.I.: Systems of thermodynamically coordinated laws of conservation invariant under rotations. Siberian Math. J. 37, 690–705 (1996)

    Article  MathSciNet  Google Scholar 

  5. Romenski, E.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Model. 28, 115–130 (1998)

    Article  MathSciNet  Google Scholar 

  6. Peshkov, I., Pavelka, M., Romenski, E., Grmela, M.: Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Continuum Mech. Thermodyn. 30(6), 1343–1378 (2018). https://doi.org/10.1007/s00161-018-0621-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016)

    Article  MathSciNet  Google Scholar 

  8. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics. J. Comput. Phys. 348, 298–342 (2017)

    Article  MathSciNet  Google Scholar 

  9. Peshkov, I., Dumbser, M., Boscheri, W., Romenski, E., Chiocchetti, S., Ioriatti, M.: Simulation of non-Newtonian viscoplastic flows with a unified first order hyperbolic model and a structure-preserving semi-implicit scheme. Comput. Fluids 224, 104963 (2021)

    Article  MathSciNet  Google Scholar 

  10. Romenski, E., Reshetova, G., Peshkov, I., Dumbser, M.: Modeling wavefields in saturated elastic porous media based on thermodynamically compatible system theory for two-phase solid-fluid mixtures. Comput. Fluids 206, 104587 (2020)

    Article  MathSciNet  Google Scholar 

  11. Reshetova, G., Romenski, E.: Diffuse interface approach to modeling wavefields in a saturated porous medium. Appl. Math. Comput. 398, 125978 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181, 577–616 (2002)

    Article  MathSciNet  Google Scholar 

  13. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 3rd edn. Springer, Heidelberg (2009). https://doi.org/10.1007/b79761

    Book  MATH  Google Scholar 

  14. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  15. Gottlieb, S.: On high order strong stability preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25, 105–128 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Saurel, R., Abgrall, R.: A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21, 1115–1145 (1999)

    Article  MathSciNet  Google Scholar 

  17. Deng, X., Inaba, S., Xie, B., Shyue, K.-M., Xiao, F.: High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces. J. Comput. Phys. 371, 945–966 (2018)

    Article  MathSciNet  Google Scholar 

  18. Xiao, F., Honma, Y., Kono, T.: A simple algebraic interface capturing scheme using hyperbolic tangent function. Int. J. Numer. Meth. Fluids 48(9), 1023–1040 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy Romenski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romenski, E., Reshetova, G. (2022). Computational Model for Fluid and Elastic Solid Interaction Based on Symmetric Hyperbolic Thermodynamically Compatible Systems Theory. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13376. Springer, Cham. https://doi.org/10.1007/978-3-031-10450-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10450-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10449-7

  • Online ISBN: 978-3-031-10450-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics