[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Development of Monitoring Systems for Anomaly Detection Using ASTD Specifications

  • Conference paper
  • First Online:
Theoretical Aspects of Software Engineering (TASE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13299))

Included in the following conference series:

Abstract

Anomaly-based intrusion detection systems are essential defenses against cybersecurity threats because they can identify anomalies in current activities. However, these systems have difficulties providing entity processing independence through a programming language. In addition, a degradation of the detection process is caused by the complexity of scheduling the training and detection processes, which are required to keep the anomaly detection system continuously updated. This paper shows how to use the algebraic state-transition diagram (ASTD) language to develop flexible anomaly detection systems. This paper provides a model for detecting point anomalies using the unsupervised non-parametric technique Kernel Density Estimation to estimate the probability density of event occurrence. The proposed model caters for both the training and the detection phase continuously. The ASTD language streamlines the modeling of detection systems thanks to its process algebraic operators that provide a solution to overcome these challenges. By delegating the combination of anomaly-based detection processes to the ASTD language, the effort and complexity are reduced during detection models development. Finally, using a qualitative evaluation, this study demonstrates that the algebraic operators in the ASTD specification language overcome these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Home (2022). http://suricata-ids.org/

  2. Ahmad, I., Basheri, M., Iqbal, M.J., Rahim, A.: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 6, 33789–33795 (2018). https://doi.org/10.1109/ACCESS.2018.2841987

    Article  Google Scholar 

  3. Bauder, R., Khoshgoftaar, T.: Multivariate anomaly detection in medicare using model residuals and probabilistic programming (2017). https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15429

  4. Frappier, M., Gervais, F., Laleau, R., Fraikin, B., St-Denis, R.: Extending statecharts with process algebra operators. Innovations Syst. Softw. Eng. 4, 285–292 (2008). https://doi.org/10.1007/s11334-008-0064-1

    Article  Google Scholar 

  5. Hallé, S.: Event Stream Processing with BeepBeep 3: Log Crunching and Analysis Made Easy (2018)

    Google Scholar 

  6. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)

    Article  Google Scholar 

  7. Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5(3), 299–314 (1996). http://www.jstor.org/stable/1390807

  8. Kasinathan, P., Pastrone, C., Spirito, M.A., Vinkovits, M.: Denial-of-service detection in 6lowpan based internet of things. In: 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 600–607 (2013)

    Google Scholar 

  9. Kauffman, S., Dunne, M., Gracioli, G., Khan, W., Benann, N., Fischmeister, S.: Palisade: a framework for anomaly detection in embedded systems. J. Syst. Architect. 113, 101876 (2021)

    Article  Google Scholar 

  10. Khakurel, N., Bhagat, N.: Advanced engineering and ICT-convergence 2019 (ICAEIC-2019), p. 22 (2019)

    Google Scholar 

  11. Létourneau, L.S., El Jabri, C., Frappier, M., Tardif, P.M., Lépine, G., Boisvert, G.: Statistical approach for cloud security: Microsoft office 365 audit logs case study. In: 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), pp. 15–18. IEEE (2021)

    Google Scholar 

  12. Lifandali, O., Abghour, N.: Deep learning methods applied to intrusion detection: survey, taxonomy and challenges. In: 2021 International Conference on Decision Aid Sciences and Application (DASA), pp. 1035–1044 (2021). https://doi.org/10.1109/DASA53625.2021.9682357

  13. Liu, G., Yi, Z., Yang, S.: Letters: a hierarchical intrusion detection model based on the pca neural networks. Neurocomput. 70(7–9), 1561–1568 (2007). https://doi.org/10.1016/j.neucom.2006.10.146

    Article  Google Scholar 

  14. Nakayama, H., Kurosawa, S., Jamalipour, A., Nemoto, Y., Kato, N.: A dynamic anomaly detection scheme for aodv-based mobile ad hoc networks. IEEE Trans. Veh. Technol. 58(5), 2471–2481 (2008)

    Article  Google Scholar 

  15. Neal, R.M.: Speed improvements in pqr: current status and future plans

    Google Scholar 

  16. Nganyewou Tidjon, L.: Modélisation formelle des systèmes de détection d’intrusions. Ph.D. thesis, Institut polytechnique de Paris (2020)

    Google Scholar 

  17. Pao, H.K., Lee, F.R., Lee, Y.J.: Dealing with interleaved event inputs for intrusion detection. J. Inf. Sci. Eng. 35(1), 223–242 (2019)

    MathSciNet  Google Scholar 

  18. Paxson, V.: Bro: a system for detecting network intruders in real-time. In: Proceedings of the 7th Conference on USENIX Security Symposium - volume 7, p. 3. SSYM 1998, USENIX Association, USA (1998)

    Google Scholar 

  19. Raza, S., Wallgren, L., Voigt, T.: Svelte: real-time intrusion detection in the internet of things. Ad Hoc Netw. 11(8), 2661–2674 (2013). https://doi.org/10.1016/j.adhoc.2013.04.014. https://www.sciencedirect.com/science/article/pii/S1570870513001005

  20. Roesch, M.: Snort: lightweight intrusion detection for networks. In: LISA (1999)

    Google Scholar 

  21. Roudjane, M., Rebaïne, D., Khoury, R., Hallé, S.: Real-time data mining for event streams. In: 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC), pp. 123–134. IEEE (2018)

    Google Scholar 

  22. Sanchez, L. et al.: Smartsantander: the meeting point between future internet research and experimentation and the smart cities. In: 2011 Future Network & Mobile Summit, pp. 1–8. IEEE (2011)

    Google Scholar 

  23. Sun, R., Zhang, S., Yin, C., Wang, J., Min, S.: Strategies for data stream mining method applied in anomaly detection. Cluster Comput. 22(2), 399–408 (2018). https://doi.org/10.1007/s10586-018-2835-2

    Article  Google Scholar 

  24. Szmit, M., Adamus, S., Szmit, A., Bugała, S.: Implementation of Brutlag’s algorithm in Anomaly detection 3.0. In: 2012 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 685–691 (2012)

    Google Scholar 

  25. Thakkar, A., Lohiya, R.: A review of the advancement in intrusion detection datasets. Procedia Comput. Sci. 167, 636–645 (2020)

    Article  Google Scholar 

  26. Thakkar, A., Lohiya, R.: A review on machine learning and deep learning perspectives of ids for iot: recent updates, security issues, and challenges. Arch. Comput. Meth. Eng. 28(4), 3211–3243 (2021). https://doi.org/10.1007/s11831-020-09496-0

    Article  Google Scholar 

  27. Tidjon, L.N., Frappier, M., Mammar, A.: Intrusion detection using ASTDs. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) AINA 2020. AISC, vol. 1151, pp. 1397–1411. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44041-1_118

    Chapter  Google Scholar 

  28. Tidjon, L.N.: Formal modeling of intrusion detection systems. Ph.D. thesis, Institut Polytechnique de Paris; Université de Sherbrooke (Québec, Canada) (2020)

    Google Scholar 

  29. Tidjon, L.N., Frappier, M., Leuschel, M., Mammar, A.: Extended algebraic state-transition diagrams. In: 2018 23rd International Conference on Engineering of Complex Computer Systems (ICECCS), pp. 146–155. IEEE (2018)

    Google Scholar 

  30. Zhang, F., Kodituwakku, H.A.D.E., Hines, J.W., Coble, J.B.: Multilayer data-driven cyber-attack detection system for industrial control systems based on network, system, and process data. IEEE Trans. Ind. Inf. 15, 4362–4369 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Jabri Chaymae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaymae, E.J., Marc, F., Thibaud, E., Pierre-Martin, T. (2022). Development of Monitoring Systems for Anomaly Detection Using ASTD Specifications. In: Aït-Ameur, Y., Crăciun, F. (eds) Theoretical Aspects of Software Engineering. TASE 2022. Lecture Notes in Computer Science, vol 13299. Springer, Cham. https://doi.org/10.1007/978-3-031-10363-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10363-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10362-9

  • Online ISBN: 978-3-031-10363-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics