[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Extending statecharts with process algebra operators

  • Original Paper
  • Published:
Innovations in Systems and Software Engineering Aims and scope Submit manuscript

Abstract

This paper describes an adaptation of statecharts to take advantage of process algebra operators like those found in CSP and EB3. The resulting notation is called algebraic state transition diagrams (ASTDs). The process algebra operators considered include sequence, iteration, parallel composition, and quantified synchronization. Quantification is one of the salient features of ASTDs, because it provides a powerful mechanism to precisely and explicitly define cardinalities in a dynamic model. The formal semantics of ASTDs is expressed using the operational style typically used in process algebras. The target application domain is the specification and implementation of information systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abrial JR (1996) The B-book: assigning programs to meanings. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Arbib M (1969) Theories of abstract automata. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  3. Bergstra JA, Klop JW (1984) Process algebra for synchronous communication. Inf Control 60(1): 109–137

    Article  MATH  MathSciNet  Google Scholar 

  4. Bolognesi T, Brinksma E (1987) Introduction to the ISO specification language LOTOS. Comput Netw ISDN Syst 14(1): 25–59

    Article  Google Scholar 

  5. Bontemps Y, Saval G, Heymans P, Schobbens PY (2006) From interaction diagrams to state machines: moving to class-level. In: AFADL 2006. ENST Technical Reports, Paris

  6. Boerger E, Staerk R (2003) Abstract state machines: a method for high-level system design and analysis. Springer, Heidelberg

    MATH  Google Scholar 

  7. Broy M, Wirsing M (2000) Algebraic state machines. In: AMAST 2000. LNCS, vol 1816. Springer, Heidelberg, pp 89–118

  8. Damn W, Harel D (2001) LSCs: Breathing life into message sequence charts. Form Methods Syst Des 19(1): 45–80

    Article  Google Scholar 

  9. Desharnais J, Frappier M, Mili A (2006) State transition diagrams. In: Bernus P, Mertins K, Schmidt G(eds) Handbook on architectures of information systems, 2nd edn. Springer, Heidelberg, pp 153–172

    Google Scholar 

  10. Desharnais J, Frappier M, Khédri R, Mili A (1998) Integration of sequential scenarios. IEEE Trans Softw Eng 24(9): 695–708

    Article  Google Scholar 

  11. Fraikin B, Frappier M (2007) Efficient symbolic execution of large quantifications in a process algebra. In: 9th International Conference on Formal Engineering Methods (ICFEM 2007). LNCS, vol 4789. Springer, Heidelberg, pp 327–344

  12. Fraikin B, Frappier M. Efficient symbolic execution of process expressions. Sci Comput Program (submitted, 2008)

  13. Frappier M, Gervais F, Laleau R, Fraikin B (2008) Algebraic state transition diagrams. Technical Report 24, Département d’informatique, Université de Sherbrooke, http://www.dmi.usherb.ca/~frappier/Papers/astd2008.pdf

  14. Frappier M, St-Denis R (2003) EB3: an entity-based black-box specification method for information systems. Softw Syst Model 2(2): 134–149

    Article  Google Scholar 

  15. Garavel H, Lang F, Mateescu R (2002) An overview of CADP 2001, european association for software science and technology (EASST). Newsletter 4: 13–24

    Google Scholar 

  16. Harel D (1987) Statecvharts: a visual formalism for complex systems. Sci Comput Program 8(3): 231–274

    Article  MATH  MathSciNet  Google Scholar 

  17. Harel D, Naamad A (1996) The STATEMATE semantics of statecharts. ACM Trans Soft Eng Meth 5(4): 293–333

    Article  Google Scholar 

  18. Hoare CAR (1985) Communicating sequential processes. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  19. Lüttgen G, von der Beeck M, Cleaveland R (1999) Statecharts via process algebra. In: CONCUR’99. LNCS, vol 1664. Springer, Heidelberg, pp 399–414

  20. Maraninchi F (1989) Argonaute: graphical description, semantics and verification of reactive systems by using a process algebra. In: Automatic verification methods for finite state systems. LNCS, vol 407. Springer, Heidelberg, pp 38–53

  21. Milner R (1989) Communication and concurrency, international series in computer science. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  22. Object Management Group. OMG unified modeling language V2.1.2, http://www.omg.org

  23. Roscoe BAW (1998) The theory and practice of concurrency, amended 2005, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  24. Wirsing M (1990) Algebraic Specification. In: Handbook of theoretical computer science, vol. B. North Holland, New York, pp 675–788

  25. Woodcock J, Davies J (1996) Using Z, specification, refinement and proof. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  26. Woodcock J, Cavalcanti A (2002). The semantics of circus, in zb 2002: formal specification and development in Z and B. LNCS, vol 2272. Springer, Heidelberg, pp 184–203

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Frappier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frappier, M., Gervais, F., Laleau, R. et al. Extending statecharts with process algebra operators. Innovations Syst Softw Eng 4, 285–292 (2008). https://doi.org/10.1007/s11334-008-0064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11334-008-0064-1

Keywords

Navigation