Abstract
Accurate cephalometric landmark detection is a crucial step in orthodontic diagnosis and therapy planning. However, existing deep learning-based methods lack the ability to explicitly model the complex dependencies among visual features and landmarks. Therefore, they fail to adaptively encode the landmark’s global structure constraint into the representation of visual concepts and suffer from large biases in landmark localization. In this work, we propose CephalFormer, which exploits the correlations between visual concepts and landmarks to provide meaningful guidance for accurate 2D and 3D cephalometric landmark detection. CephalFormer explores local-global anatomical contents in a coarse-to-fine fashion and consists of two stages: (1) a new efficient Transformer-based architecture for coarse landmark localization; (2) a novel paradigm based on self-attention to represent visual clues and landmarks in one coherent feature space for fine-scale landmark detection. We evaluated CephalFormer on two public cephalometric landmark detection benchmarks and a real-patient dataset consisting of 150 skull CBCT volumes. Experiments show that CephalFormer significantly outperforms the state-of-the-art methods, demonstrating its generalization capability and stability to naturally handle both 2D and 3D scenarios under a unified framework.
Y. Jiang and Y. Li—Equally contributed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arik, S.Ö., Ibragimov, B., Xing, L.: Fully automated quantitative cephalometry using convolutional neural networks. J. Med. Imaging 4(1), 014501 (2017)
Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)
Chen, R., Ma, Y., Chen, N., Lee, D., Wang, W.: Cephalometric landmark detection by attentive feature pyramid fusion and regression-voting. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 873–881. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_97
Chen, R., et al.: Structure-aware long short-term memory network for 3d cephalometric landmark detection. IEEE Trans. Med. Imaging (2022)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hurst, C.A., Eppley, B.L., Havlik, R.J., Sadove, A.M.: Surgical cephalometrics: applications and developments. Plast. Reconstr. Surg. 120(6), 92e–104e (2007)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Lang, Y., et al.: Automatic localization of landmarks in craniomaxillofacial CBCT images using a local attention-based graph convolution network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 817–826. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_79
Li, W., et al.: Structured landmark detection via topology-adapting deep graph learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 266–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_16
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Oh, K., Oh, I.S., Lee, D.W., et al.: Deep anatomical context feature learning for cephalometric landmark detection. IEEE J. Biomed. Health Inform. 25(3), 806–817 (2020)
Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207–219 (2019)
Qian, J., Cheng, M., Tao, Y., Lin, J., Lin, H.: CephaNet: an improved faster R-CNN for cephalometric landmark detection. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 868–871. IEEE (2019)
Raudaschl, P.F., et al.: Evaluation of segmentation methods on head and neck CT: auto-segmentation challenge 2015. Med. Phys. 44(5), 2020–2036 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Vaswani, A., et al.: Attention is all you need. Advances in Neural Inf. Process. Syst. 30 (2017)
Wang, C.W., et al.: Evaluation and comparison of anatomical landmark detection methods for cephalometric x-ray images: a grand challenge. IEEE Trans. Med. Imaging 34(9), 1890–1900 (2015)
Wang, C.W., et al.: A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31, 63–76 (2016)
Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11
Xu, W., Xu, Y., Chang, T., Tu, Z.: Co-scale conv-attentional image transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9981–9990 (2021)
Yao, Q., Quan, Q., Xiao, L., Kevin Zhou, S.: One-shot medical landmark detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 177–188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_17
Yueyuan, A., Hong, W.: Swin transformer combined with convolutional encoder for cephalometric landmarks detection. In: 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp. 184–187. IEEE (2021)
Yun, H.S., Hyun, C.M., Baek, S.H., Lee, S.H., Seo, J.K.: Automated 3D cephalometric landmark identification using computerized tomography. arXiv preprint arXiv:2101.05205 (2020)
Zeng, M., Yan, Z., Liu, S., Zhou, Y., Qiu, L.: Cascaded convolutional networks for automatic cephalometric landmark detection. Med. Image Anal. 68, 101904 (2021)
Zhong, Z., Li, J., Zhang, Z., Jiao, Z., Gao, X.: An attention-guided deep regression model for landmark detection in cephalograms. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 540–548. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_60
Zhou, G.Q., et al.: Learn fine-grained adaptive loss for multiple anatomical landmark detection in medical images. IEEE J. Biomed. Health Inform. 25(10), 3854–3864 (2021)
Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)
Zhu, H., Yao, Q., Xiao, L., Zhou, S.K.: You only learn once: universal anatomical landmark detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 85–95. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_9
Acknowledgements
This research was partially supported by the National Natural Science Foundation of China under Grant 61972343, the National Major Scientific Research Instrument Development Project under Grant 81827804, and the Key Research and Development Program of Zhejiang Province under Grant 2021C03032.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, Y., Li, Y., Wang, X., Tao, Y., Lin, ., Lin, H. (2022). CephalFormer: Incorporating Global Structure Constraint into Visual Features for General Cephalometric Landmark Detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-16437-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16436-1
Online ISBN: 978-3-031-16437-8
eBook Packages: Computer ScienceComputer Science (R0)