[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

CephalFormer: Incorporating Global Structure Constraint into Visual Features for General Cephalometric Landmark Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13433))

Abstract

Accurate cephalometric landmark detection is a crucial step in orthodontic diagnosis and therapy planning. However, existing deep learning-based methods lack the ability to explicitly model the complex dependencies among visual features and landmarks. Therefore, they fail to adaptively encode the landmark’s global structure constraint into the representation of visual concepts and suffer from large biases in landmark localization. In this work, we propose CephalFormer, which exploits the correlations between visual concepts and landmarks to provide meaningful guidance for accurate 2D and 3D cephalometric landmark detection. CephalFormer explores local-global anatomical contents in a coarse-to-fine fashion and consists of two stages: (1) a new efficient Transformer-based architecture for coarse landmark localization; (2) a novel paradigm based on self-attention to represent visual clues and landmarks in one coherent feature space for fine-scale landmark detection. We evaluated CephalFormer on two public cephalometric landmark detection benchmarks and a real-patient dataset consisting of 150 skull CBCT volumes. Experiments show that CephalFormer significantly outperforms the state-of-the-art methods, demonstrating its generalization capability and stability to naturally handle both 2D and 3D scenarios under a unified framework.

Y. Jiang and Y. Li—Equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arik, S.Ö., Ibragimov, B., Xing, L.: Fully automated quantitative cephalometry using convolutional neural networks. J. Med. Imaging 4(1), 014501 (2017)

    Google Scholar 

  2. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  3. Chen, R., Ma, Y., Chen, N., Lee, D., Wang, W.: Cephalometric landmark detection by attentive feature pyramid fusion and regression-voting. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 873–881. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_97

    Chapter  Google Scholar 

  4. Chen, R., et al.: Structure-aware long short-term memory network for 3d cephalometric landmark detection. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

  5. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Hurst, C.A., Eppley, B.L., Havlik, R.J., Sadove, A.M.: Surgical cephalometrics: applications and developments. Plast. Reconstr. Surg. 120(6), 92e–104e (2007)

    Article  Google Scholar 

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  9. Lang, Y., et al.: Automatic localization of landmarks in craniomaxillofacial CBCT images using a local attention-based graph convolution network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 817–826. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_79

    Chapter  Google Scholar 

  10. Li, W., et al.: Structured landmark detection via topology-adapting deep graph learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 266–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_16

    Chapter  Google Scholar 

  11. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  12. Oh, K., Oh, I.S., Lee, D.W., et al.: Deep anatomical context feature learning for cephalometric landmark detection. IEEE J. Biomed. Health Inform. 25(3), 806–817 (2020)

    Article  Google Scholar 

  13. Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207–219 (2019)

    Article  Google Scholar 

  14. Qian, J., Cheng, M., Tao, Y., Lin, J., Lin, H.: CephaNet: an improved faster R-CNN for cephalometric landmark detection. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 868–871. IEEE (2019)

    Google Scholar 

  15. Raudaschl, P.F., et al.: Evaluation of segmentation methods on head and neck CT: auto-segmentation challenge 2015. Med. Phys. 44(5), 2020–2036 (2017)

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. Advances in Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  18. Wang, C.W., et al.: Evaluation and comparison of anatomical landmark detection methods for cephalometric x-ray images: a grand challenge. IEEE Trans. Med. Imaging 34(9), 1890–1900 (2015)

    Article  Google Scholar 

  19. Wang, C.W., et al.: A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31, 63–76 (2016)

    Article  Google Scholar 

  20. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11

    Chapter  Google Scholar 

  21. Xu, W., Xu, Y., Chang, T., Tu, Z.: Co-scale conv-attentional image transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9981–9990 (2021)

    Google Scholar 

  22. Yao, Q., Quan, Q., Xiao, L., Kevin Zhou, S.: One-shot medical landmark detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 177–188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_17

    Chapter  Google Scholar 

  23. Yueyuan, A., Hong, W.: Swin transformer combined with convolutional encoder for cephalometric landmarks detection. In: 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp. 184–187. IEEE (2021)

    Google Scholar 

  24. Yun, H.S., Hyun, C.M., Baek, S.H., Lee, S.H., Seo, J.K.: Automated 3D cephalometric landmark identification using computerized tomography. arXiv preprint arXiv:2101.05205 (2020)

  25. Zeng, M., Yan, Z., Liu, S., Zhou, Y., Qiu, L.: Cascaded convolutional networks for automatic cephalometric landmark detection. Med. Image Anal. 68, 101904 (2021)

    Google Scholar 

  26. Zhong, Z., Li, J., Zhang, Z., Jiao, Z., Gao, X.: An attention-guided deep regression model for landmark detection in cephalograms. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 540–548. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_60

    Chapter  Google Scholar 

  27. Zhou, G.Q., et al.: Learn fine-grained adaptive loss for multiple anatomical landmark detection in medical images. IEEE J. Biomed. Health Inform. 25(10), 3854–3864 (2021)

    Article  Google Scholar 

  28. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)

  29. Zhu, H., Yao, Q., Xiao, L., Zhou, S.K.: You only learn once: universal anatomical landmark detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 85–95. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_9

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Natural Science Foundation of China under Grant 61972343, the National Major Scientific Research Instrument Development Project under Grant 81827804, and the Key Research and Development Program of Zhejiang Province under Grant 2021C03032.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubo Tao or Hai Lin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 23 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Y., Li, Y., Wang, X., Tao, Y., Lin, ., Lin, H. (2022). CephalFormer: Incorporating Global Structure Constraint into Visual Features for General Cephalometric Landmark Detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics