Abstract
Detecting anatomical landmarks in medical images plays an essential role in understanding the anatomy and planning automated processing. In recent years, a variety of deep neural network methods have been developed to detect landmarks automatically. However, all of those methods are unary in the sense that a highly specialized network is trained for a single task say associated with a particular anatomical region. In this work, for the first time, we investigate the idea of “You Only Learn Once (YOLO)” and develop a universal anatomical landmark detection model to realize multiple landmark detection tasks with end-to-end training based on mixed datasets. The model consists of a local network and a global network: The local network is built upon the idea of universal U-Net to learn multi-domain local features and the global network is a parallelly-duplicated sequential of dilated convolutions that extract global features to further disambiguate the landmark locations. It is worth mentioning that the new model design requires much fewer parameters than models with standard convolutions to train. We evaluate our YOLO model on three X-ray datasets of 1,588 images on the head, hand, and chest, collectively contributing 62 landmarks. The experimental results show that our proposed universal model behaves largely better than any previous models trained on multiple datasets. It even beats the performance of the model that is trained separately for every single dataset. Our code is available at https://github.com/ICT-MIRACLE-lab/YOLO_Universal_Anatomical_Landmark_Detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Candemir, S., et al.: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med. Imaging 33(2), 577–590 (2013)
Chiras, J., Depriester, C., Weill, A., Sola-Martinez, M., Deramond, H.: Percutaneous vertebral surgery. technics and indications. J. Neuroradiol.= Journal de neuroradiologie 24(1), 45–59 (1997)
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011)
Huang, C., Han, H., Yao, Q., Zhu, S., Zhou, S.K.: 3D U\(^2\)-Net: a 3D universal u-net for multi-domain medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 291–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_33
Ibragimov, B., Korez, R., Likar, B., Pernuš, F., Xing, L., Vrtovec, T.: Segmentation of pathological structures by landmark-assisted deformable models. IEEE Trans. Med. Imaging 36(7), 1457–1469 (2017)
Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: Shape representation for efficient landmark-based segmentation in 3-d. IEEE Trans. Med. Imaging 33(4), 861–874 (2014)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)
Jaeger, S., et al.: Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 33(2), 233–245 (2013)
Lange, T., et al.: 3d ultrasound-ct registration of the liver using combined landmark-intensity information. Int. J. Comput. Assist. Radiol. Surg. 4(1), 79–88 (2009)
Lay, N., Birkbeck, N., Zhang, J., Zhou, S.K.: Rapid multi-organ segmentation using context integration and discriminative models. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 450–462. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_38
Li, H., Han, H., Zhou, S.K.: Bounding maps for universal lesion detection. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 417–428. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_41
Lian, C., et al.: Multi-task dynamic transformer network for concurrent bone segmentation and large-scale landmark localization with dental CBCT. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 807–816. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_78
Lindner, C., Bromiley, P.A., Ionita, M.C., Cootes, T.F.: Robust and accurate shape model matching using random forest regression-voting. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1862–1874 (2014)
Liu, D., Zhou, S.K., Bernhardt, D., Comaniciu, D.: Search strategies for multiple landmark detection by submodular maximization. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2831–2838. IEEE (2010)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)
Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based cnns for landmark localization. Med. Image Anal. 54, 207–219 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472. IEEE (2017)
Štern, D., Ebner, T., Urschler, M.: From local to global random regression forests: exploring anatomical landmark localization. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 221–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_26
Urschler, M., Ebner, T., Štern, D.: Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization. Med. Image Anal. 43, 23–36 (2018)
Wang, C.W., et al.: A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31, 63–76 (2016)
Wang, P., et al.: Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1451–1460. IEEE (2018)
Yang, D., et al.: Deep image-to-image recurrent network with shape basis learning for automatic vertebra labeling in large-scale 3d ct volumes. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 498–506. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_57
Yao, Q., He, Z., Han, H., Zhou, S.K.: Miss the point: targeted adversarial attack on multiple landmark detection. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 692–702. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_67
Zhou, S.K., et al.: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. In: Proceedings of the IEEE (2021)
Zhou, S.K., Rueckert, D., Fichtinger, G.: Handbook of Medical Image Computing and Computer Assisted Intervention. Academic Press, Cambridge (2019)
Zhou, S.K.: Shape regression machine and efficient segmentation of left ventricle endocardium from 2d b-mode echocardiogram. Med. Image Anal. 14(4), 563–581 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhu, H., Yao, Q., Xiao, L., Zhou, S.K. (2021). You only Learn Once: Universal Anatomical Landmark Detection. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-87240-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87239-7
Online ISBN: 978-3-030-87240-3
eBook Packages: Computer ScienceComputer Science (R0)