[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Application of the Polynomial Maximization Method for Estimation Parameters of Autoregressive Models with Asymmetric Innovations

  • Conference paper
  • First Online:
Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques (AUTOMATION 2022)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1427))

Included in the following conference series:

  • 391 Accesses

Abstract

This paper considers the application of the Polynomial Maximization Method to find estimates of the parameters of autoregressive model with non-Gaussian innovation. This approach is adaptive and is based on the analysis of higher-order statistics. Analytical expressions that allow finding estimates and analyzing their uncertainty are obtained. Case of asymmetry of the distribution of autoregressive innovations is considered. It is shown that the variance of estimates of the Polynomial Maximization Method can be significantly less than the variance of the estimates of the linear approach (based on Yule-Walker equation or Ordinary Least Squares). The increase in accuracy depends on the values of the cumulant coefficients of higher orders of innovation residuals. The results of statistical modeling by the Monte Carlo method confirm the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grunwald, G.K., Hyndman, R.J., Tedesco, L., Tweedie, R.L.: Theory and methods: non-Gaussian conditional linear AR (1) models. Aust. N. Z. J. Stat. 42(4), 479–495 (2000)

    Article  MathSciNet  Google Scholar 

  2. Ozaki, T., Iino, M.: An innovation approach to non-Gaussian time series analysis. J. Appl. Probab. 38(A), 78–92 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bondon, P.: Estimation of autoregressive models with epsilon-skew-normal innovations. J. Multivar. Anal. 100, 1761–1776 (2009)

    Article  MathSciNet  Google Scholar 

  4. Hürlimann, W.: On non-Gaussian AR(1) inflation modelling. J. Stat. Econom. Methods. 1(1), 93–109 (2012)

    Google Scholar 

  5. Nguyen, H.D., McLachlan, G.J., Ullmann, J.F.P., Janke, A.L.: Laplace mixture autoregressive models. Stat. Probab. Lett. 110, 18–24 (2016)

    Article  MathSciNet  Google Scholar 

  6. Akkaya, A.D., Tiku, M.L.: Time series AR(1) model for short-tailed distributions. Statistics 39(2), 117–132 (2005)

    Article  MathSciNet  Google Scholar 

  7. Tikhonov, V.: Generalized autoregressive model of non-Gaussian processes. Radiotekhnika 132, 78–82 (2003). (in Russian)

    Google Scholar 

  8. Swami, A., Mendel, J.M., Nikias, C.: Higher-order spectral analysis toolbox. In: MATLAB User Guide. The Math Works Inc. (2001)

    Google Scholar 

  9. Al-Smadi, A.: A new coefficient estimation method for autoregressive systems using cumulants. Int. J. Circuit Theory Appl. 29(5), 511–516 (2001)

    Article  Google Scholar 

  10. Kunchenko, Y.: Polynomial Parameter Estimations of Close to Gaussian Random variables. Shaker, Aachen (2002)

    Google Scholar 

  11. Warsza, Z.L., Zabolotnii, S.: Estimation of measurand parameters for data from asymmetric distributions by polynomial maximization method. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2018. AISC, vol. 743, pp. 746–757. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77179-3_74

    Chapter  Google Scholar 

  12. Zabolotnii, S.W., Warsza, Z.L.: Semi-parametric estimation of the change-point of parameters of non-Gaussian sequences by polynomial maximization method. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. AISC, vol. 440, pp. 903–919. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29357-8_80

    Chapter  Google Scholar 

  13. Zabolotnii, S.W., Warsza, Z.L., Tkachenko, O.: Estimation of linear regression parameters of symmetric non-Gaussian errors by polynomial maximization method. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2019, vol. 920, pp. 636–649. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-13273-6_59

    Chapter  Google Scholar 

  14. Zabolotnii, S., Tkachenko, O., Warsza, Z.L.: Application of the polynomial maximization method for estimation parameters in the polynomial regression with non-Gaussian residuals. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques. AISC, vol. 1390, pp. 402–415. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74893-7_36

    Chapter  Google Scholar 

  15. Bondon, P., Song, L.: AR processes with non-Gaussian asymmetric innovations. In: European Signal Processing Conference, pp. 1–5 (2013)

    Google Scholar 

  16. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, New York (1996). https://doi.org/10.1007/b97391

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zygmunt L. Warsza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zabolotnii, S., Tkachenko, O., Warsza, Z.L. (2022). Application of the Polynomial Maximization Method for Estimation Parameters of Autoregressive Models with Asymmetric Innovations. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques. AUTOMATION 2022. Advances in Intelligent Systems and Computing, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-031-03502-9_37

Download citation

Publish with us

Policies and ethics