Abstract
This paper considers the application of the Polynomial Maximization Method to find estimates of the parameters of autoregressive model with non-Gaussian innovation. This approach is adaptive and is based on the analysis of higher-order statistics. Analytical expressions that allow finding estimates and analyzing their uncertainty are obtained. Case of asymmetry of the distribution of autoregressive innovations is considered. It is shown that the variance of estimates of the Polynomial Maximization Method can be significantly less than the variance of the estimates of the linear approach (based on Yule-Walker equation or Ordinary Least Squares). The increase in accuracy depends on the values of the cumulant coefficients of higher orders of innovation residuals. The results of statistical modeling by the Monte Carlo method confirm the effectiveness of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Grunwald, G.K., Hyndman, R.J., Tedesco, L., Tweedie, R.L.: Theory and methods: non-Gaussian conditional linear AR (1) models. Aust. N. Z. J. Stat. 42(4), 479–495 (2000)
Ozaki, T., Iino, M.: An innovation approach to non-Gaussian time series analysis. J. Appl. Probab. 38(A), 78–92 (2001)
Bondon, P.: Estimation of autoregressive models with epsilon-skew-normal innovations. J. Multivar. Anal. 100, 1761–1776 (2009)
Hürlimann, W.: On non-Gaussian AR(1) inflation modelling. J. Stat. Econom. Methods. 1(1), 93–109 (2012)
Nguyen, H.D., McLachlan, G.J., Ullmann, J.F.P., Janke, A.L.: Laplace mixture autoregressive models. Stat. Probab. Lett. 110, 18–24 (2016)
Akkaya, A.D., Tiku, M.L.: Time series AR(1) model for short-tailed distributions. Statistics 39(2), 117–132 (2005)
Tikhonov, V.: Generalized autoregressive model of non-Gaussian processes. Radiotekhnika 132, 78–82 (2003). (in Russian)
Swami, A., Mendel, J.M., Nikias, C.: Higher-order spectral analysis toolbox. In: MATLAB User Guide. The Math Works Inc. (2001)
Al-Smadi, A.: A new coefficient estimation method for autoregressive systems using cumulants. Int. J. Circuit Theory Appl. 29(5), 511–516 (2001)
Kunchenko, Y.: Polynomial Parameter Estimations of Close to Gaussian Random variables. Shaker, Aachen (2002)
Warsza, Z.L., Zabolotnii, S.: Estimation of measurand parameters for data from asymmetric distributions by polynomial maximization method. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2018. AISC, vol. 743, pp. 746–757. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77179-3_74
Zabolotnii, S.W., Warsza, Z.L.: Semi-parametric estimation of the change-point of parameters of non-Gaussian sequences by polynomial maximization method. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. AISC, vol. 440, pp. 903–919. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29357-8_80
Zabolotnii, S.W., Warsza, Z.L., Tkachenko, O.: Estimation of linear regression parameters of symmetric non-Gaussian errors by polynomial maximization method. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2019, vol. 920, pp. 636–649. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-13273-6_59
Zabolotnii, S., Tkachenko, O., Warsza, Z.L.: Application of the polynomial maximization method for estimation parameters in the polynomial regression with non-Gaussian residuals. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques. AISC, vol. 1390, pp. 402–415. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74893-7_36
Bondon, P., Song, L.: AR processes with non-Gaussian asymmetric innovations. In: European Signal Processing Conference, pp. 1–5 (2013)
Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, New York (1996). https://doi.org/10.1007/b97391
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zabolotnii, S., Tkachenko, O., Warsza, Z.L. (2022). Application of the Polynomial Maximization Method for Estimation Parameters of Autoregressive Models with Asymmetric Innovations. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques. AUTOMATION 2022. Advances in Intelligent Systems and Computing, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-031-03502-9_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-03502-9_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-03501-2
Online ISBN: 978-3-031-03502-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)