Abstract
This paper considers the application of the polynomial maximization method to find estimates of the parameters of polynomial regression. It is shown that this method can be effective for the case when the distribution of the random component of the regression models differs significantly from the Gaussian distribution. This approach is adaptive and is based on the analysis of higher-order statistics of regression residuals. Analytical expressions that allow finding estimates and analyzing their uncertainty are obtained. Cases of asymmetry and symmetry of the distribution of regression errors are considered. It is shown that the variance of estimates of the polynomial maximization method can be significantly less than the variance of the estimates of the least squares method, which is a special case. The increase in accuracy depends on the values of the cumulant coefficients of higher orders of random errors of the regression model. The results of statistical modeling by the Monte Carlo method confirm the effectiveness of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Johnson, N.L.: Systems of frequency curves generated by methods of translation. Biometrika 36, 149–176 (1949)
Box, G.E.P., Cox, D.R.: An analysis of transformations. J. Roy. Stat. Soc. Ser. B 26, 211–246 (1964)
Huber, P.J., Ronchetti, E.M.: Robust Statistics. Wiley, Hoboken (2009). https://doi.org/10.1002/9780470434697
Stone, C.J.: Adaptive maximum likelihood estimators of a location parameter. Ann. Stat. 3(2), 267–284 (1975). https://doi.org/10.1214/aos/1176343056
Schechtman, E., Schechtman, G.: Estimating the parameters in regression with uniformly distributed errors. J. Stat. Comput. Simul. 26(3–4), 269–281 (1986). https://doi.org/10.1080/00949658608810965
Zeckhauser, R., Thompson, M.: Linear regression with non-normal error terms. Rev. Econ. Stat. 52, 280–286 (1970)
Islam, M.Q., Tiku, M.L., Yildirim, F.: Nonnormal regression. I. Skew distributions. Commun. Stat. Theory Methods 30(6), 993–1020 (2001). https://doi.org/10.1081/STA-100104347
Tiku, M.L., Islam, M.Q., Selçuk, A.S.: Nonnormal regression. II. Symmetric distributions. Commun. Stat. Theory Methods 30(6), 1021–1045 (2001). https://doi.org/10.1081/STA-100104348
Van Montfort, K., Mooijaart, A., de Leeuw, J.: Regression with errors in variables: estimators based on third order moments. Stat. Neerl. 41(4), 223–237 (1987)
Dagenais, M.G., Dagenais, D.L.: Higher moment estimators for linear regression models with errors in the variables. J. Econ. 76(1–2), 193–221 (1997). https://doi.org/10.1016/0304-4076(95)01789-5
Cragg, J.G.: Using higher moments to estimate the simple errors-in-variables model. RAND J. Econ. 28, S71 (1997). https://doi.org/10.2307/3087456
Gillard, J.: Method of moments estimation in linear regression with errors in both variables. Commun. Stat. Theory Methods 43(15), 3208–3222 (2014). https://doi.org/10.1080/03610926.2012.698785
Giacalone, M.: A combined method based on kurtosis indexes for estimating p in non-linear L p-norm regression. Sustain. Futures 2, 100008 (2020). https://doi.org/10.1016/j.sftr.2020.100008
Kunchenko, Y.: Polynomial Parameter Estimations of Close to Gaussian Random Variables. Shaker Verlag, Aachen (2002)
Zabolotnii, S.W., Martynenko, S.S., Salypa, S.V.: Method of verification of hypothesis about mean value on a basis of expansion in a space with generating element. Radioelectron. Commun. Syst. 61, 222–229 (2018). https://doi.org/10.3103/S0735272718050060
Chertov, O., Slipets, T.: Epileptic seizures diagnose using Kunchenko’s polynomials template matching. In: Fontes, M., Günther, M., Marheineke, N. (eds.) Progress in Industrial Mathematics at ECMI 2012, pp. 245–248. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05365-3_33.
Zabolotnii, S.V., Warsza, Z.L.: Semi-parametric polynomial method for retrospective estimation of the change-point of parameters of non-Gaussian sequences. In: Advanced Mathematical and Computational Tools in Metrology and Testing X, pp. 400–408 (2015).https://doi.org/10.1142/9789814678629_0048
Zabolotnii, S.W., Warsza, Z.L.: Semi-parametric polynomial modification of CUSUM algorithms for change-point detection of non-Gaussian sequences. In: Electronic Proceedings of XXI IMEKO World Congress “Measurement in Research and Industry”, Prague Czech Republic, September 2015, vol. 30, pp. 2088–2091 (2015)
Zabolotnii, S., Warsza, Z., Tkachenko, O.: Polynomial estimation of linear regression parameters for the asymmetric pdf of errors. Advances in Intelligent Systems and Computing, vol. 743, pp. 758–772. Springer (2018). https://doi.org/10.1007/978-3-319-77179-3_75
Zabolotnii, S.W., Warsza, Z.L., Tkachenko, O.: Estimation of linear regression parameters of symmetric non-Gaussian errors by polynomial maximization method. Advances in Intelligent Systems and Computing, vol. 920, pp. 636–649. Springer (2020). https://doi.org/10.1007/978-3-030-13273-6_59
Cook, R.D., Weisberg, S.: Residuals and Influence in Regression. Monographs on Statistics and Applied Probability (1982). https://doi.org/10.2307/1269506
Jarque, C.M., Bera, A.K.: A tests of observations and regression residuals. Int. Stat. Rev. 55, 163–172 (1987)
Quinlan, J.R.: Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on Machine Learning, pp. 236–243 (1993)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zabolotnii, S., Tkachenko, O., Warsza, Z.L. (2021). Application of the Polynomial Maximization Method for Estimation Parameters in the Polynomial Regression with Non-Gaussian Residuals. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques. AUTOMATION 2021. Advances in Intelligent Systems and Computing, vol 1390. Springer, Cham. https://doi.org/10.1007/978-3-030-74893-7_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-74893-7_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-74892-0
Online ISBN: 978-3-030-74893-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)