[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Generalized Inverted Dirichlet Predictive Model for Activity Recognition Using Small Training Data

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence (IEA/AIE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13343))

Abstract

In this paper, we develop the predictive distribution of the generalized inverted Dirichlet (GID) mixture model using local variational inference. The main goal is to be able to tackle classification problems involving small training data sets. The two main ingredients of the proposed predictive model are the GID distribution which provides flexibility for the modeling of semi-bounded data that are naturally generated by different sensors outputs and the efficient of variational inference as a deterministic approximation to fully Bayesian approaches. The merits of the proposed model are shown via synthetic data and a real application that concerns activities recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bdiri, T., Bouguila, N., Ziou, D.: Variational bayesian inference for infinite generalized inverted Dirichlet mixtures with feature selection and its application to clustering. Appl. Intell. 44(3), 507–525 (2016)

    Article  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  3. Bouguila, N.: A model-based discriminative framework for sets of positive vectors classification: application to object categorization. In: 2014 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pp. 277–282 (2014)

    Google Scholar 

  4. Bourouis, S., Al Mashrgy, M., Bouguila, N.: Bayesian learning of finite generalized inverted Dirichlet mixtures: application to object classification and forgery detection. Expert Syst. Appl. 41(5), 2329–2336 (2014)

    Article  Google Scholar 

  5. Bourouis, S., Al-Osaimi, F.R., Bouguila, N., Sallay, H., Aldosari, F., Al Mashrgy, M.: Bayesian inference by reversible jump MCMC for clustering based on finite generalized inverted Dirichlet mixtures. Soft. Comput. 23(14), 5799–5813 (2019)

    Article  Google Scholar 

  6. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge University Press (2004)

    Google Scholar 

  7. Diethe, T., Twomey, N., Flach, P.A.: Active transfer learning for activity recognition. In: ESANN (2016)

    Google Scholar 

  8. Epaillard, E., Bouguila, N.: Proportional data modeling with hidden Markov models based on generalized Dirichlet and beta-liouville mixtures applied to anomaly detection in public areas. Pattern Recognit. 55, 125–136 (2016)

    Article  Google Scholar 

  9. Fan, W., Bouguila, N.: Nonparametric hierarchical bayesian models for positive data clustering based on inverted Dirichlet-based distributions. IEEE Access 7, 83600–83614 (2019)

    Article  Google Scholar 

  10. Fan, W., Bouguila, N., Liu, X.: A hierarchical Dirichlet process mixture of GID distributions with feature selection for spatio-temporal video modeling and segmentation. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2771–2775 (2017)

    Google Scholar 

  11. Hossain, H.M.S., Khan, M.A.A.H., Roy, N.: Active learning enabled activity recognition. Pervasive Mob. Comput. 38, 312–330 (2017). Special Issue IEEE International Conference on Pervasive Computing and Communications (PerCom) 2016

    Google Scholar 

  12. Hussain, F., et al.: An efficient machine learning-based elderly fall detection algorithm. arXiv preprint arXiv:1911.11976 (2019)

  13. Hussain, Z., Sheng, Q.Z., Zhang, W.E.: A review and categorization of techniques on device-free human activity recognition. J. Netw. Comput. Appl. 167, 102738 (2020)

    Article  Google Scholar 

  14. Kim, H.G., Kim, G.Y., Kim, J.Y.: Music recommendation system using human activity recognition from accelerometer data. IEEE Trans. Consum. Electron. 65(3), 349–358 (2019)

    Article  Google Scholar 

  15. Ma, Z., Leijon, A.: Approximating the predictive distribution of the beta distribution with the local variational method. In: 2011 IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6. IEEE (2011)

    Google Scholar 

  16. Ma, Z., Leijon, A., Tan, Z.H., Gao, S.: Predictive distribution of the Dirichlet mixture model by local variational inference. J. Signal Process. Syst. 74(3), 359–374 (2014)

    Article  Google Scholar 

  17. Mashrgy, M.A., Bdiri, T., Bouguila, N.: Robust simultaneous positive data clustering and unsupervised feature selection using generalized inverted Dirichlet mixture models. Knowl. Based Syst. 59, 182–195 (2014)

    Article  Google Scholar 

  18. Mukherjee, D., Mondal, R., Singh, P.K., Sarkar, R., Bhattacharjee, D.: Ensemconvnet: a deep learning approach for human activity recognition using smartphone sensors for healthcare applications. Multimed. Tools Appl. 79(41), 31663–31690 (2020)

    Article  Google Scholar 

  19. Nasfi, R., Amayri, M., Bouguila, N.: A novel approach for modeling positive vectors with inverted Dirichlet-based hidden Markov models. Knowl.-Based Syst. 192, 105335 (2020)

    Article  Google Scholar 

  20. Palumbo, F., Barsocchi, P., Gallicchio, C., Chessa, S., Micheli, A.: Multisensor data fusion for activity recognition based on reservoir computing. In: Botía, J.A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds.) EvAAL 2013. CCIS, vol. 386, pp. 24–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41043-7_3

    Chapter  Google Scholar 

  21. Palumbo, F., Gallicchio, C., Pucci, R., Micheli, A.: Human activity recognition using multisensor data fusion based on reservoir computing. J. Ambient Intell. Smart Environ. 8(2), 87–107 (2016)

    Article  Google Scholar 

  22. Pan, D., Liu, H., Qu, D., Zhang, Z.: Human falling detection algorithm based on multisensor data fusion with SVM. Mobile Information Systems 2020 (2020)

    Google Scholar 

  23. Phyo, C.N., Zin, T.T., Tin, P.: Deep learning for recognizing human activities using motions of skeletal joints. IEEE Trans. Consum. Electron. 65(2), 243–252 (2019)

    Article  Google Scholar 

  24. Qi, W., Su, H., Chen, F., Zhou, X., Shi, Y., Ferrigno, G., De Momi, E.: Depth vision guided human activity recognition in surgical procedure using wearable multisensor. In: 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 431–436. IEEE (2020)

    Google Scholar 

  25. Sun, S., Folarin, A.A., Ranjan, Y., Rashid, Z., Conde, P., Stewart, C., Cummins, N., Matcham, F., Dalla Costa, G., Simblett, S., et al.: Using smartphones and wearable devices to monitor behavioral changes during covid-19. J. Med. Internet Res. 22(9), e19992 (2020)

    Article  Google Scholar 

  26. Swarnakar, S.K., Agrawal, H., Goel, A.: Smartphone inertial sensors-based human activity detection using support vector machine. In: Sharma, T.K., Ahn, C.W., Verma, O.P., Panigrahi, B.K. (eds.) Soft Computing: Theories and Applications. AISC, vol. 1381, pp. 231–241. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1696-9_22

    Chapter  Google Scholar 

  27. Woodstock, T.K.A.: Multisensor Fusion for Occupancy Detection and Activity Recognition in a Smart Room. Rensselaer Polytechnic Institute (2020)

    Google Scholar 

Download references

Acknowledgement

The completion of this research was made possible thanks to Natural Sciences and Engineering Research Council of Canada (NSERC), the “Nouveaux arrivants Université Grenoble Alpes, Grenoble INP - UGA, G-SCOP" program and the National Natural Science Foundation of China (61876068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Bouguila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, J., Amayri, M., Fan, W., Bouguila, N. (2022). A Generalized Inverted Dirichlet Predictive Model for Activity Recognition Using Small Training Data. In: Fujita, H., Fournier-Viger, P., Ali, M., Wang, Y. (eds) Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence. IEA/AIE 2022. Lecture Notes in Computer Science(), vol 13343. Springer, Cham. https://doi.org/10.1007/978-3-031-08530-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08530-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08529-1

  • Online ISBN: 978-3-031-08530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics