[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multisensor Data Fusion for Activity Recognition Based on Reservoir Computing

  • Conference paper
Evaluating AAL Systems Through Competitive Benchmarking (EvAAL 2013)

Abstract

Ambient Assisted Living facilities provide assistance and care for the elderly, where it is useful to infer their daily activity for ensuring their safety and successful ageing. In this work, we present an Activity Recognition system that classifies a set of common daily activities exploiting both the data sampled by accelerometer sensors carried out by the user and the reciprocal Received Signal Strength (RSS) values coming from worn wireless sensor devices and from sensors deployed in the environment. To this end, we model the accelerometer and the RSS stream, obtained from a Wireless Sensor Network (WSN), using Recurrent Neural Networks implemented as efficient Echo State Networks (ESNs), within the Reservoir Computing paradigm. Our results show that, with an appropriate configuration of the ESN, the system reaches a good accuracy with a low deployment cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choudhury, T., LaMarca, A., LeGrand, L., Rahimi, A., Rea, A., Borriello, G., Hemingway, B., Koscher, K., Lan, J.A., Lester, J., Wyatt, D., Haehnel, D., et al.: The mobile sensing platform: An embedded activity recognition system (2008)

    Google Scholar 

  2. Khawandi, S., Daya, B., Chauvet, P.: Automated monitoring system for fall detection in the elderly. International Journal of Image Processing 4(5) (2010)

    Google Scholar 

  3. Bocca, M., Kaltiokallio, O., Patwari, N.: Radio tomographic imaging for ambient assisted living. In: Chessa, S., Knauth, S. (eds.) EvAAL 2012. CCIS, vol. 362, pp. 108–130. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review 3(3), 127–149 (2009)

    Article  Google Scholar 

  5. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  6. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. Technical report, GMD (2001)

    Google Scholar 

  7. Bacciu, D., Gallicchio, C., Lenzi, A., Chessa, S., Micheli, A., Pelagatti, S., Vairo, C.: Distributed neural computation over WSN in ambient intelligence. In: van Berlo, A., Hallenborg, K., Rodríguez, J.M.C., Tapia, D.I., Novais, P. (eds.) Ambient Intelligence – Software & Applications. AISC, vol. 219, pp. 147–154. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: Proceedings of the Seventeenth Conference on Innovative Applications of Artificial Intelligence (IAAI), pp. 1541–1546. AAAI Press (2005)

    Google Scholar 

  9. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010)

    Article  Google Scholar 

  11. Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., Micheli, A.: An experimental characterization of reservoir computing in ambient assisted living applications. Neural Computing and Applications, 1–14 (2013)

    Google Scholar 

  12. Bacciu, D., Chessa, S., Gallicchio, C., Micheli, A., Barsocchi, P.: An experimental evaluation of reservoir computation for ambient assisted living. In: Apolloni, B., Bassis, S., Esposito, A., Morabito, F.C. (eds.) Neural Nets and Surroundings. SIST, vol. 19, pp. 41–50. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Gallicchio, C., Micheli, A., Barsocchi, P., Chessa, S.: User movements forecasting by reservoir computing using signal streams produced by mote-class sensors. In: Ser, J., Jorswieck, E., Miguez, J., Matinmikko, M., Palomar, D., Salcedo-Sanz, S., Gil-Lopez, S. (eds.) MOBILIGHT 2011. LNICST, vol. 81, pp. 151–168. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Bacciu, D., Gallicchio, C., Micheli, A., Barsocchi, P., Chessa, S.: Predicting user movements in heterogeneous indoor environments by reservoir computing. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), Space, Time and Ambient Intelligence Workshop (STAMI 2011), July 16-22, pp. 1–8 (2011)

    Google Scholar 

  15. Guraliuc, A., Barsocchi, P., Potort, F., Nepa, P.: Limb movements classification using wearable wireless transceivers. IEEE Transactions on Information Technology in Biomedicine 15(3), 474–480 (2011)

    Article  Google Scholar 

  16. Barsocchi, P.: Position recognition to support bedsores prevention. IEEE Journal of Biomedical and Health Informatics 17(1), 53–59 (2013)

    Article  Google Scholar 

  17. TelosB: Tmote sky, http://www.capsil.org/capsilwiki/index.php/TELOSB/TMote_Sky (accessed: May 18, 2013)

  18. Moog: Crossbow, http://www.xbow.com (accessed: May 18, 2013)

  19. TinyOS: Tinyos, http://www.tinyos.net/ (accessed: May 18, 2013)

  20. Ashford, S., De Souza, L.: A comparison of the timing of muscle activity during sitting down compared to standing up. Physiotherapy Research International 5(2), 111–128 (2000)

    Article  Google Scholar 

  21. Kralj, A., Jaeger, R.J., Munih, M.: Analysis of standing up and sitting down in humans: definitions and normative data presentation. Journal of Biomechanics 23(11), 1123–1138 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Palumbo, F., Barsocchi, P., Gallicchio, C., Chessa, S., Micheli, A. (2013). Multisensor Data Fusion for Activity Recognition Based on Reservoir Computing. In: Botía, J.A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds) Evaluating AAL Systems Through Competitive Benchmarking. EvAAL 2013. Communications in Computer and Information Science, vol 386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41043-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41043-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41042-0

  • Online ISBN: 978-3-642-41043-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics