Abstract
Logical calculi applied to solve SAT are unsound for MaxSAT and MinSAT because they preserve satisfiability but not the minimum and the maximum number of unsatisfied clauses, respectively. This paper overviews the complete resolution and tableau-style calculi that have been defined to solve MaxSAT and MinSAT, as well as their variants with hard and weighted soft clauses. These calculi provide an exact approach to solving MaxSAT and MinSAT problems.
This work has been supported by the French Agence Nationale de la Recherche, reference ANR-19-CHIA-0013-01, and Grant PID2019-111544GB-C21 funded by MCIN/AEI/10.13039/501100011033. The last author was supported by mobility grant PRX21/00488 of the Spanish Ministerio de Universidades.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abramé, A., Habet, D.: Ahmaxsat: description and evaluation of a branch and bound Max-SAT solver. J. Satisfiability Boolean Modeling Comput. 9, 89–128 (2014)
Abramé, A., Habet, D.: Local search algorithm for the partial minimum satisfiability problem. In: Proceedings of the 27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI, Vietri sul Mare, Italy, pp. 821–827 (2015)
Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: Inference rules for high-order consistency in weighted CSP. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, Vancouver, Canada, pp. 167–172 (2007)
Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: The logic behind weighted CSP. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI-2007, Hyderabad, India, pp. 32–37 (2007)
Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: Resolution procedures for multiple-valued optimization. Inf. Sci. 227, 43–59 (2013)
Ansótegui, C., Izquierdo, I., Manyà, F., Jiménez, J.T.: A Max-SAT-based approach to constructing optimal covering arrays. In: Proceedings of the 16th International Conference of the Catalan Association for Artificial Intelligence, CCIA 2013, Vic, Spain. Frontiers in Artificial Intelligence and Applications, vol. 256, pp. 51–59. IOS Press (2013)
Ansótegui, C., Levy, J.: Reducing SAT to Max2SAT. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI-2021, Montreal, Canada, pp. 193–198 (2021)
Ansótegui, C., Li, C.M., Manyà, F., Zhu, Z.: A SAT-based approach to MinSAT. In: Proceedings of the 15th International Conference of the Catalan Association for Artificial Intelligence, CCIA-2012, Alacant, Spain, pp. 185–189. IOS Press (2012)
Ansótegui, C., Manyà, F., Ojeda, J., Salvia, J.M., Torres, E.: Incomplete MaxSAT approaches for combinatorial testing. J. Heuristics (2022, in press)
Argelich, J., Li, C.M., Manyà, F., Planes, J.: The first and second Max-SAT evaluations. J. Satisfiability Boolean Modeling Comput. 4(2–4), 251–278 (2008)
Argelich, J., Li, C.M., Manyà, F., Soler, J.R.: Clause tableaux for maximum and minimum satisfiability. Logic J. IGPL 29(1), 7–27 (2021)
Bacchus, F., Berg, J., Järvisalo, M., Martins, R.: MaxSAT Evaluation 2020: Solver and Benchmark Descriptions. University of Helsinki, Department of Computer Science (2020)
Bacchus, F., Järvisalo, M., Ruben, M.: Maximum satisfiability. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 929–991. IOS Press, Amsterdam (2021)
Beckert, B., Hähnle, R., Manyà, F.: The SAT problem of signed CNF formulas. In: Basin, D., D’Agostino, M., Gabbay, D., Matthews, S., Viganò, L. (eds.) Labelled Deduction. Applied Logic Series, vol. 17, pp. 61–82. Kluwer, Dordrecht (2000)
Bofill, M., Garcia, M., Suy, J., Villaret, M.: MaxSAT-based scheduling of B2B meetings. In: Proceedings of the12th International Conference on Integration of AI and OR Techniques in Constraint Programming, CPAIOR, Barcelona, Spain, pp. 65–73 (2015)
Bonet, M.L., Buss, S., Ignatiev, A., Marques-Silva, J., Morgado, A.: MaxSAT resolution with the dual rail encoding. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AAAI, New Orleans, Louisiana, USA, pp. 6565–6572 (2018)
Bonet, M.L., Levy, J.: Equivalence between systems stronger than resolution. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 166–181. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7_13
Bonet, M.L., Levy, J., Manyà, F.: A complete calculus for Max-SAT. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 240–251. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_24
Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9), 240–251 (2007)
Cai, S., Lei, Z.: Old techniques in new ways: clause weighting, unit propagation and hybridization for maximum satisfiability. Artif. Intell. 287, 103354 (2020)
Casas-Roma, J., Huertas, A., Manyà, F.: Solving MaxSAT with natural deduction. In: Proceedings of the 20th International Conference of the Catalan Association for Artificial Intelligence, Deltebre, Spain. Frontiers in Artificial Intelligence and Applications, vol. 300, pp. 186–195. IOS Press (2017)
D’Agostino, M.: Tableaux methods for classical propositional logic. In: D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 45–123. Kluwer (1999)
D’Almeida, D., Grégoire, É.: Model-based diagnosis with default information implemented through MAX-SAT technology. In: Proceedings of the IEEE 13th International Conference on Information Reuse & Integration, IRI, Las Vegas, NV, USA, pp. 33–36 (2012)
Fiorino, G.: New tableau characterizations for non-clausal MaxSAT problem. Logic J. IGPL (2021). https://doi.org/10.1093/jigpal/jzab012
Fiorino, G.: A non-clausal tableau calculus for MinSAT. Inf. Process. Lett. 173, 106167 (2022)
Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfiability. In: Proceedings of the 18th International Conference on Principles and Practice of Constraint Programming, CP, Québec City, QC, Canada, pp. 941–956 (2012)
Hähnle, R.: Tableaux and related methods. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 100–178. Elsevier and MIT Press (2001)
Haken, A.: The intractability of resolution. Theoret. Comput. Sci. 39, 297–308 (1985)
Heras, F., Larrosa, J.: New inference rules for efficient Max-SAT solving. In: Proceedings of the National Conference on Artificial Intelligence, AAAI-2006, Boston/MA, USA, pp. 68–73 (2006)
Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: an efficient weighted Max-SAT solver. J. Artif. Intell. Res. 31, 1–32 (2008)
Ignatiev, A., Morgado, A., Marques-Silva, J.: On tackling the limits of resolution in SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 164–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_11
Jabbour, S., Mhadhbi, N., Raddaoui, B., Sais, L.: A SAT-based framework for overlapping community detection in networks. In: Proceedings of the 21st Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Part II, PAKDD, Jeju, South Korea, pp. 786–798 (2017)
Kuegel, A.: Improved exact solver for the weighted MAX-SAT problem. In: Proceedings of Workshop Pragmatics of SAT, POS-10, Edinburgh, UK, pp. 15–27 (2010)
Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency in weighted CSPs. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI-2005, Edinburgh, Scotland, pp. 193–198. Morgan Kaufmann (2005)
Larrosa, J., Rollon, E.: Towards a better understanding of (partial weighted) MaxSAT proof systems. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 218–232. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7_16
Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 903–927. IOS Press (2021)
Li, C.M., Manyà, F.: An exact inference scheme for MinSAT. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI-2015, Buenos Aires, Argentina, pp. 1959–1965 (2015)
Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower bounds in branch and bound max-SAT solvers. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 403–414. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_31
Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing lower bounds for Max-SAT. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI-2006, Boston/MA, USA, pp. 86–91 (2006)
Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. J. Artif. Intell. Res. 30, 321–359 (2007)
Li, C.M., Manyà, F., Soler, J.R.: A clause tableaux calculus for MaxSAT. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI-2016, New York, USA, pp. 766–772 (2016)
Li, C.M., Manyà, F., Soler, J.R.: Clausal form transformation in MaxSAT. In: Proceedings of the 49th IEEE International Symposium on Multiple-Valued Logic, ISMVL, Fredericton, Canada, pp. 132–137 (2019)
Li, C.M., Manyà, F., Soler, J.R.: A tableau calculus for non-clausal maximum satisfiability. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 58–73. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29026-9_4
Li, C.M., Manyà, F., Soler, J.R., Vidal, A.: From non-clausal to clausal MinSAT. In: Proceedings of the 23rd International Conference of the Catalan Association for Artificial Intelligence, CCIA, Lleida, Spain, pp. 27–36. IOS Press (2021)
Li, C.M., Xiao, F., Manyà, F.: A resolution calculus for MinSAT. Logic J. IGPL 29(1), 28–44 (2021)
Li, C.-M., Zhenxing, X., Coll, J., Manyà, F., Habet, D., He, K.: Boosting branch-and-bound MaxSAT solvers with clause learning. AI Commun. (2021). https://doi.org/10.3233/AIC-210178
Li, C.-M., Xu, Z., Coll, J., Manyà, F., Habet, D., He, K.: Combining clause learning and branch and bound for MaxSAT. In: Proceedings of the 27th International Conference on Principles and Practice of Constraint Programming, CP, Montpellier, France. LIPIcs, vol. 210, pp. 38:1–38:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Minimum satisfiability and its applications. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI-2011, Barcelona, Spain, pp. 605–610 (2011)
Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Optimizing with minimum satisfiability. Artif. Intell. 190, 32–44 (2012)
Manyà, F., Negrete, S., Roig, C., Soler, J.R.: A MaxSAT-based approach to the team composition problem in a classroom. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10643, pp. 164–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71679-4_11
Manyà, F., Negrete, S., Roig, C., Soler, J.R.: Solving the team composition problem in a classroom. Fundamamenta Informaticae 174(1), 83–101 (2020)
Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343 (2011)
Mundici, D.: Ulam game, the logic of MaxSAT, and many-valued partitions. In: Prade, H., Dubois, D., Klement, E.P. (eds.) Logics and Reasoning about Knowledge, pp. 121–137. Kluwer (1999)
Mundici, D., Olivetti, N.: Resolution and model building in the infinitely-valued calculus of Łukasiewicz. Theoret. Comput. Sci. 200(1–2), 335–366 (1998)
Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Canada, pp. 2717–2723 (2014)
Olivetti, N.: Tableaux for Łukasiewicz infinite-valued logic. Stud. Logica. 73(1), 81–111 (2003)
Py, M., Cherif, M.S., Habet, D.: A proof builder for max-SAT. In: Li, C.-M., Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 488–498. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80223-3_33
Robinson, J.A.: A machine oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)
Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.: Improved design debugging using maximum satisfiability. In: Proceedings of 7th International Conference on Formal Methods in Computer-Aided Design, FMCAD, Austin, Texas, USA, pp. 13–19 (2007)
Smullyan, R.: First-Order Logic. Dover Publications, New York, second corrected edition (1995). First published 1968 by Springer-Verlag
Warner, H.: A new resolution calculus for the infinite-valued propositional logic of Łukasiewicz. In: Proceedings of the International Workshop on First order Theorem Proving, pp. 234–243 (1998)
Xu, H., Rutenbar, R.A., Sakallah, K.A.: sub-SAT: a formulation for relaxed boolean satisfiability with applications in routing. IEEE Trans. CAD Integr. Circuits Syst. 22(6), 814–820 (2003)
Zhang, L., Bacchus, F.: MAXSAT heuristics for cost optimal planning. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence, Toronto, Ontario, Canada, pp. 1846–1852 (2012)
Acknowledgments
We thank the reviewers for their valuable comments and suggestions, which greatly improved this manuscript. We also want to congratulate Reiner Hähnle on his 60th birthday, as well as thank Bernhard Beckert, Einar Broch Johnsen, Richard Bubel, and Wolfgang Ahrendt for organizing a symposium and Festschrift in honor of Reiner Hähnle.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Li, C.M., Manyà, F. (2022). Inference in MaxSAT and MinSAT. In: Ahrendt, W., Beckert, B., Bubel, R., Johnsen, E.B. (eds) The Logic of Software. A Tasting Menu of Formal Methods. Lecture Notes in Computer Science, vol 13360. Springer, Cham. https://doi.org/10.1007/978-3-031-08166-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-08166-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08165-1
Online ISBN: 978-3-031-08166-8
eBook Packages: Computer ScienceComputer Science (R0)