[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A MaxSAT-Based Approach to the Team Composition Problem in a Classroom

  • Conference paper
  • First Online:
Autonomous Agents and Multiagent Systems (AAMAS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10643))

Included in the following conference series:

Abstract

Given a classroom containing a fixed number of students and a fixed number of tables that can be of different sizes, as well as a list of preferred classmates to sit with for each student, the team composition problem in a classroom (TCPC) is the problem of finding an assignment of students to tables in such a way that preferences are maximally-satisfied. In this paper, we formally define the TCPC, prove that it is NP-hard and define a MaxSAT model of the problem. Moreover, we report on the results of an empirical investigation that show that solving the TCPC with MaxSAT solvers is a promising approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://tools.computational-logic.org/content/pblib.php.

  2. 2.

    The out-degree of a vertex is the number of edges going out of a vertex in a directed graph.

  3. 3.

    Since most of the MaxSAT solvers deal with weights that are positive integers, in the experiments we multiply the weights by 100 and take the integer part.

References

  1. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: A parametric approach for smaller and better encodings of cardinality constraints. In: Proceedings of the 19th International Conference on Principles and Practice of Constraint Programming, CP, Uppsala, Sweden, pp. 80–96 (2013)

    Google Scholar 

  2. Abramé, A., Habet, D.: On the resiliency of unit propagation to max-resolution. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI-2015, Buenos Aires, Argentina, pp. 268–274 (2015)

    Google Scholar 

  3. Alberola, J.M., del Val, E., Sánchez-Anguix, V., Palomares, A., Teruel, M.D.: An artificial intelligence tool for heterogeneous team formation in the classroom. Knowl. Based Syst. 101, 1–14 (2016)

    Article  Google Scholar 

  4. Alberola, J.M., del Val, E., Sanchez-Anguix, V., Julian, V.: Simulating a collective intelligence approach to student team formation. In: Pan, J.-S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS (LNAI), vol. 8073, pp. 161–170. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40846-5_17

    Chapter  Google Scholar 

  5. Alsinet, T., Manyà, F., Planes, J.: An efficient solver for weighted Max-SAT. J. Glob. Optim. 41, 61–73 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andrejczuk, E., Rodríguez-Aguilar, J.A., Roig, C., Sierra, C.: Synergistic team composition. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS, São Paulo, Brazil, pp. 1463–1465 (2017)

    Google Scholar 

  7. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores in MaxSAT. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI, Buenos Aires, Argentina, pp. 283–289 (2015)

    Google Scholar 

  8. Ansótegui, C., Gabàs, J., Malitsky, Y., Sellmann, M.: MaxSAT by improved instance-specific algorithm configuration. Artif. Intell. 235, 26–39 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The first and second Max-SAT evaluations. J. Satisfiability Boolean Model. Comput. 4, 251–278 (2008)

    MATH  Google Scholar 

  10. Argelich, J., Li, C.M., Manyà, F., Planes, J.: Analyzing the instances of the MaxSAT evaluation. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 360–361. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0_29

    Chapter  Google Scholar 

  11. Argelich, J., Manyà, F.: Exact Max-SAT solvers for over-constrained problems. J. Heuristics 12(4–5), 375–392 (2006)

    Article  MATH  Google Scholar 

  12. Bonet, M.L., Levy, J., Manyà, F.: A complete calculus for Max-SAT. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 240–251. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_24

    Chapter  Google Scholar 

  13. Costaguta, R.: Algorithms and machine learning techniques in collaborative group formation. In: Lagunas, O.P., Alcántara, O.H., Figueroa, G.A. (eds.) MICAI 2015. LNCS (LNAI), vol. 9414, pp. 249–258. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27101-9_18

    Chapter  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  15. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Biere, A., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 613–631. IOS Press (2009)

    Google Scholar 

  16. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. J. Artif. Intell. Res. 30, 321–359 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Li, C.M., Manyà, F., Soler, J.R.: A clause tableaux calculus for MaxSAT. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI-2016, New York City, NY, USA, pp. 766–772 (2016)

    Google Scholar 

  18. Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Minimum satisfiability and its applications. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI-2011, Barcelona, Spain, pp. 605–610 (2011)

    Google Scholar 

  19. Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Optimizing with minimum satisfiability. In: Artificial Intelligence, vol. 190, pp. 32–44 (2012)

    Google Scholar 

  20. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_39

    Google Scholar 

  21. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Generalitat de Catalunya grant AGAUR 2014-SGR-118, and the MINECO-FEDER project RASO TIN2015-71799-C2-1-P. The second author is supported by grant PSPA-PNB-CGVyDI.324.2016 from Universidad Autónoma Metropolitana (Cuajimalpa), Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felip Manyà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manyà, F., Negrete, S., Roig, C., Soler, J.R. (2017). A MaxSAT-Based Approach to the Team Composition Problem in a Classroom. In: Sukthankar, G., Rodriguez-Aguilar, J. (eds) Autonomous Agents and Multiagent Systems. AAMAS 2017. Lecture Notes in Computer Science(), vol 10643. Springer, Cham. https://doi.org/10.1007/978-3-319-71679-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71679-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71678-7

  • Online ISBN: 978-3-319-71679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics