[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Parameterized View on the Complexity of Dependence Logic

  • Conference paper
  • First Online:
Logical Foundations of Computer Science (LFCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13137))

Included in the following conference series:

  • 638 Accesses

Abstract

In this paper, we investigate the parameterized complexity of model checking for Dependence Logic which is a well studied logic in the area of Team Semantics. We start with a list of nine immediate parameterizations for this problem, namely: the number of disjunctions (i.e., splits)/(free) variables/universal quantifiers, formula-size, the tree-width of the Gaifman graph of the input structure, the size of the universe/team, and the arity of dependence atoms. We present a comprehensive picture of the parameterized complexity of model checking and obtain a division of the problem into tractable and various intractable degrees. Furthermore, we also consider the complexity of the most important variants (data and expression complexity) of the model checking problem by fixing parts of the input.

First author funded by grants 308712 and 338259 of the Academy of Finland. Second and third authors funded by German Research Foundation (DFG), project ME 4279/1-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a \(k\)-tree. SIAM J. Algebraic Discrete Meth. (1987). https://doi.org/10.1137/0608024

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern., 11(1–2), 1–21 (1993). https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3417

  3. Bodlaender, H.L.: Discovering treewidth. In: SOFSEM, vol. 3381 of Lecture Notes in Computer Science, pp. 1–16. Springer (2005). https://doi.org/10.1007/978-3-540-30577-4_1

  4. Fundamentals of Parameterized Complexity. TCS. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

  5. Durand, A., Kontinen, J.: Hierarchies in dependence logic. ACM Trans. Comput. Logic (TOCL) 13(4), 31 (2012). https://doi.org/10.1145/2362355.2362359

    Article  MathSciNet  MATH  Google Scholar 

  6. Ebbinghaus, H.D., Flum, J.: Finite model theory. In: Perspectives in Mathematical Logic. Springer (1995). 978-3-540-60149-4, https://doi.org/10.1007/978-3-662-03182-7

  7. Elberfeld, M., Stockhusen, C., Tantau, T.: On the space and circuit complexity of parameterized problems: classes and completeness. Algorithmica 71(3), 661–701 (2014). https://doi.org/10.1007/s00453-014-9944-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Parameterized Complexity Theory. TTCSAES. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

  9. Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012). https://doi.org/10.1016/j.apal.2011.08.005

    Article  MathSciNet  MATH  Google Scholar 

  10. Galliani, P.: On strongly first-order dependencies. In: Dependence Logic, pp. 53–71. Springer (2016). https://doi.org/10.1007/978-3-319-31803-5_4

  11. Galliani, P., Hella, L.: Inclusion logic and fixed point logic. In: Rocca, S.R.D. (ed.) Computer science logic 2013 (CSL 2013), vol. 23 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 281–295, Dagstuhl, Germany, 2013. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/LIPIcs.CSL.2013.281

  12. Grädel, E.: Model-checking games for logics of imperfect information. Theor. Comput. Sci. 493, 2–14 (2013). https://doi.org/10.1016/j.tcs.2012.10.033

    Article  MathSciNet  MATH  Google Scholar 

  13. Grädel, E., Väänänen, J.: Dependence and independence. Studia Logica 101(2), 399–410 (2013). https://doi.org/10.1007/s11225-013-9479-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Hannula, M., Kontinen, J., Bussche, J.V., Virtema, J.: Descriptive complexity of real computation and probabilistic independence logic. In: LICS, pp. 550–563. ACM (2020). https://doi.org/10.1145/3373718.3394773

  15. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional logics in team semantic. ACM Trans. Comput. Log. 19(1), 2:1–2:14 (2018). https://doi.org/10.1145/3157054

  16. Kontinen, J.: Coherence and computational complexity of quantifier-free dependence logic formulas. Studia Logica 101(2), 267–291 (2013). https://doi.org/10.1007/s11225-013-9481-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Libkin, L.: Elements of finite model theory. In: Texts in Theoretical Computer Science. An EATCS Series. Springer (2004). https://doi.org/10.1007/978-3-662-07003-1

  18. Lohmann, P., Vollmer, H.: Complexity results for modal dependence logic. Stud. Logica 101(2), 343–366 (2013). https://doi.org/10.1007/s11225-013-9483-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Lück, M.: Canonical models and the complexity of modal team logic. Log. Methods Comput. Sci. 15(2) (2019). https://doi.org/10.23638/LMCS-15(2:2)2019

  20. Mahmood, Y., Meier, A.: Parameterised complexity of model checking and satisfiability in propositional dependence logic. In: Foundations of Information and Knowledge Systems - 11th International Symposium, FoIKS 2020, 17–21 February 2020, Dortmund, Germany, Proceedings, pp. 157–174 (2020). https://doi.org/10.1007/978-3-030-39951-1_10

  21. Mahmood, Y., Virtema, J.: Parameterised complexity of propositional logic in team semantics. CoRR. arXiv: 2105.14887

  22. Martin, B.: First-order model checking problems parameterized by the model. In: CiE, volume 5028 of Lecture Notes in Computer Science, pp. 417–427. Springer (2008). https://doi.org/10.1007/978-3-540-69407-6_45

  23. Meier, A., Reinbold, C.: Enumeration complexity of poor man’s propositional dependence logic. In: FoIKS, volume 10833 of Lecture Notes in Computer Science, pp. 303–321. Springer (2018). https://doi.org/10.1007/978-3-319-90050-6_17

  24. Papadimitriou, C.H.: Computational Complexity (1994). 978-0-201-53082-7 25

    Google Scholar 

  25. Robertson, N., Seymour, P.D.: Graph minors. III. planar tree-width. J. Comb. Theory Ser. B 36(1), 49–64 (1984). https://doi.org/10.1016/0095-8956(84)90013-3

  26. Samer, M., Szeider, S.: Fixed-parameter tractability. In: Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pp. 425–454. IOS Press (2009). https://doi.org/10.3233/978-1-58603-929-5-425

  27. Väänänen, J.A.: Dependence Logic - A New Approach to Independence Friendly Logic, volume 70 of London Mathematical Society student texts. Cambridge University Press (2007). 978-0-521-70015-3

    Google Scholar 

  28. Virtema, J.: Approaches to Finite Variable Dependence: Expressiveness and Computational Complexity. PhD thesis, School of Information Sciences of the University of Tampere (2014). 978-951-44-9472-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Mahmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kontinen, J., Meier, A., Mahmood, Y. (2022). A Parameterized View on the Complexity of Dependence Logic. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2022. Lecture Notes in Computer Science(), vol 13137. Springer, Cham. https://doi.org/10.1007/978-3-030-93100-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93100-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93099-8

  • Online ISBN: 978-3-030-93100-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics