Abstract
The parameterized complexity of a problem is generally considered “settled” once it has been shown to be fixed-parameter tractable or to be complete for a class in a parameterized hierarchy such as the weft hierarchy. Several natural parameterized problems have, however, resisted such a classification. In the present paper we argue that, in some cases, this is due to the fact that the parameterized complexity of these problems can be better understood in terms of their parameterized space or parameterized circuit complexity. This includes well-studied, natural problems like the feedback vertex set problem, the associative generability problem, or the longest common subsequence problem. We show that these problems lie in and may even be complete for different parameterized space classes, leading to new insights into the problems’ complexity. The classes we study are defined in terms of different forms of bounded nondeterminism and simultaneous time–space bounds.
Similar content being viewed by others
References
Bodlaender, H.L.: On linear time minor tests with depth-first search. J. Algorithms 14(1), 1–23 (1993). doi:10.1006/jagm.1993.1001
Buss, J., Goldsmith, J.: Nondeterminism within P*. SIAM J. Comput. 22, 560–572 (1993)
Buss, S., Cook, S., Gupta, A., Ramachandran, V.: An optimal parallel algorithm for formula evaluation. SIAM J. Comput. 21(4), 755–780 (1992). doi:10.1137/0221046
Buss, S.R.: The Boolean formula value problem is in alogtime. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC 1987), ACM, pp. 123–131. (1987). doi:10.1145/28395.28409
Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized tractability. Ann. Pure Appl. Log. 84(1), 119–138 (1997a). doi:10.1016/S0168-0072(95)00020-8
Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the parameterized complexity of short computation and factorization. Arch. Math. Log. 36(4–5), 321–337 (1997b)
Chen, H., Müller, M.: The fine classification of conjunctive queries and parameterized logarithmic space complexity. In: PODS ’13 Proceedings of the 32nd Symposium on Principles of Database Systems, ACM, pp. 309–320. (2013). doi:10.1145/2463664.2463669
Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5), 21:2–21:19 (2008). doi:10.1145/1411509.1411511
Chen, Y., Flum, J., Grohe, M.: Bounded nondeterminism and alternation in parameterized complexity theory. In: Proceedings of the 18th IEEE Annual Conference on Computational Complexity (CCCC 2003), pp. 13–29. (2003). doi:10.1109/ccc.2003.1214407
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)
Elberfeld, M., Stockhusen, C., Tantau, T.: On the space complexity of parameterized problems. In: Thilikos, D.M., Woeginger, G.J. (eds.) Parameterized and Exact Computation, Lecture Notes in Computer Science, vol. 7535, pp. 206–217. Springer, Berlin. (2012).doi:10.1007/978-3-642-33293-7_20
Fellows, M., Hallett, M., Stege, U.: Analogs & duals of the mast problem for squences & trees. J. Algorithms 49(1), 192–216 (2003)
Flum, J., Grohe, M.: Describing parameterized complexity classes. Inf. Comput. 187, 291–319 (2003). doi:10.1016/S0890-5401(03)00161-5
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006). doi:10.1007/3-540-29953-X
Guillemot, S.: Parameterized complexity and approximability of the longest compatible sequence problem. Discret. Optim. 8(1), 50–60 (2011). doi:10.1016/j.disopt.2010.08.003
Hartmanis, J.: On non-determinancy in simple computing devices. Acta Inform. 1, 336–344 (1972). doi:10.1007/BF00289513
Hong, J.W.: On some deterministic space complexity problems. SIAM J. Comput. 11(3), 591–601 (1982). doi:10.1137/0211050
Immerman, N.: Descriptive Complexity. Springer, New York (1998)
Jones, N.D., Laaser, W.T.: Complete problems for deterministic polynomial time. Theoret. Comput. Sci. 3(1), 105–117 (1976). doi:10.1016/0304-3975(76)90068-2
Jones, N.D., Lien, Y.E., Laaser, W.T.: New problems complete for nondeterministic log space. Math. Syst. Theory 10(1), 1–17 (1976). doi:10.1007/BF01683259
Kintala, C.M.R., Fischer, P.C.: Refining nondeterminism in relativized polynomial-time bounded computations. SIAM J. Comput. 1(9), 46–53 (1980). doi:10.1137/0209003
Stockhusen, C., Tantau, T.: Completeness results for parameterized space classes. Tech. Rep. arXiv:1308.2892, ArXiv e-prints (2013a)
Stockhusen, C., Tantau, T.: Completeness results for parameterized space classes. In: Gutin, G., Szeider, S. (eds.) Parameterized and Exact Computation, Lecture Notes in Computer Science, vol. 8246, pp. 335–347. Springer, Berlin (2013b). doi:10.1007/978-3-319-03898-8_28
Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, Berlin (1999)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Elberfeld, M., Stockhusen, C. & Tantau, T. On the Space and Circuit Complexity of Parameterized Problems: Classes and Completeness. Algorithmica 71, 661–701 (2015). https://doi.org/10.1007/s00453-014-9944-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-014-9944-y