[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Sequential Learning on Liver Tumor Boundary Semantics and Prognostic Biomarker Mining

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

The boundary of tumors (hepatocellular carcinoma, or HCC) contains rich semantics: capsular invasion, visibility, smoothness, folding and protuberance, etc. Capsular invasion on tumor boundary has proven to be clinically correlated with the prognostic indicator, microvascular invasion (MVI). Investigating tumor boundary semantics has tremendous clinical values. In this paper, we propose the first and novel computational framework that disentangles the task into two components: spatial vertex localization and sequential semantic classification. (1) A HCC tumor segmentor is built for tumor mask boundary extraction, followed by polar transform representing the boundary with radius and angle. Vertex generator is used to produce fixed-length boundary vertices where vertex features are sampled on the corresponding spatial locations. (2) The sampled deep vertex features with positional embedding are mapped into a sequential space and decoded by a multilayer perceptron (MLP) for semantic classification. Extensive experiments on tumor capsule semantics demonstrate the effectiveness of our framework. Mining the correlation between the boundary semantics and MVI status proves the feasibility to integrate this boundary semantics as a valid HCC prognostic biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, C., Kim, M.J.: Imaging features related with prognosis of hepatocellular carcinoma. Abdominal Radiol. 44(2), 509–516 (2019)

    Article  Google Scholar 

  2. Bertasius, G., Shi, J., Torresani, L.: High-for-low and low-for-high: efficient boundary detection from deep object features and its applications to high-level vision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 504–512 (2015)

    Google Scholar 

  3. Chan, A.W., et al.: Development of pre and post-operative models to predict early recurrence of hepatocellular carcinoma after surgical resection. J. Hepatol. 69(6), 1284–1293 (2018)

    Google Scholar 

  4. Chen, G., Chen, J., Lienen, M., Conradt, J., Röhrbein, F., Knoll, A.C.: Flgr: fixed length gists representation learning for rnn-hmm hybrid-based neuromorphic continuous gesture recognition. Front. Neuroscience 13, 73 (2019)

    Google Scholar 

  5. Chen, J., et al.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  6. Choi, J.Y., Lee, J.M., Sirlin, C.B.: Ct and mr imaging diagnosis and staging of hepatocellular carcinoma: part i. development, growth, and spread: key pathologic and imaging aspects. Radiology 272(3), 635–654 (2014)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  8. Ehman, E.C., et al.: Rate of observation and inter-observer agreement for li-rads major features at ct and mri in 184 pathology proven hepatocellular carcinomas. Abdominal Radiol. 41(5), 963–969 (2016)

    Google Scholar 

  9. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: 2011 International Conference on Computer Vision, pp. 991–998. IEEE (2011)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Hou, X., Yuille, A., Koch, C.: Boundary detection benchmarking: beyond f-measures. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2123–2130 (2013)

    Google Scholar 

  12. Kojiro, M.: Histopathology of liver cancers. Best Pract. Res. Clin. Gastroenterol. 19(1), 39–62 (2005)

    Article  Google Scholar 

  13. Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., Li, J.: Dice loss for data-imbalanced nlp tasks. arXiv preprint arXiv:1911.02855 (2019)

  14. Liang, J., Homayounfar, N., Ma, W.-C., Xiong, Y., Hu, R., Urtasun, R.: Polytransform: deep polygon transformer for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9131–9140 (2020)

    Google Scholar 

  15. Liu, R., et al.: An intriguing failing of convolutional neural networks and the coordconv solution. arXiv preprint arXiv:1807.03247 (2018)

  16. Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., Yuille, A.: Deep captioning with multimodal recurrent neural networks (m-rnn). arXiv preprint arXiv:1412.6632 (2014)

  17. Qi, H., Collins, S., Alison Noble, J.: Upi-net: semantic contour detection in placental ultrasound. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, p. 0 (2019)

    Google Scholar 

  18. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_30

    Chapter  Google Scholar 

  19. Shah, S.A., et al.: Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes. Surgery 141(3), 330–339 (2007)

    Google Scholar 

  20. Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3982–3991 (2015)

    Google Scholar 

  21. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215 (2014)

  22. Tang, Y., Tang, Y., Zhu, Y., Xiao, J., Summers, R.M.: E2net: an edge enhanced network for accurate liver and tumor segmentation on ct scans. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 512–522. Springer (2020)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  24. Xie, E., et al.: Polarmask: single shot instance segmentation with polar representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12193–12202 (2020)

    Google Scholar 

  25. Xu, W., Wang, H., Qi, F., Lu, C.: Explicit shape encoding for real-time instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5168–5177 (2019)

    Google Scholar 

  26. Yao, J., Shi, Y., Lu, L., Xiao, J., Zhang, L.: DeepPrognosis: preoperative prediction of pancreatic cancer survival and surgical margin via contrast-enhanced CT imaging. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 272–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_27

    Chapter  Google Scholar 

  27. Zhu, F., Yang, F., Li, J., Chen, W., Yang, W.: Incomplete tumor capsule on preoperative imaging reveals microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis. Abdominal Radiol. 44(9), 3049–3057 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, JN. et al. (2021). Sequential Learning on Liver Tumor Boundary Semantics and Prognostic Biomarker Mining. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics