Abstract
The Milnor number of an isolated complete intersection singularity (ICIS) is considered in the context of symbolic computation. Based on the classical Lê-Greuel formula, a new method for computing Milnor numbers is introduced. Key ideas of our approach are the use of auxiliary indeterminates and the concept of local cohomology with coefficients in the field of rational functions of auxiliary indeterminates. The resulting algorithm is described and some examples are given for illustration.
This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (C) (18K03320 and 18K03214).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afzal, D., Afzal, F., Mulback, M., Pfister, G., Yaqub, A.: Unimodal ICIS, a classifier. Studia Scientiarum Math. Hungarica 54, 374–403 (2017)
Altman, A., Kleiman, S.: Introduction to Grothendieck Duality Theory. LNM, vol. 146. Springer, Heidelberg (1970). https://doi.org/10.1007/BFb0060932
Bivià-Ausina, C.: Mixed Newton numbers and isolated complete intersection singularities. Proc. London Math. Soc. 94, 749–771 (2007)
Brieskorn, E.: Vue d’ensembre sur les problèmes de monodromie. Astérisque 7(8), 393–413 (1973)
Callejas-Brdregal, R., Morgado, M.F.Z., Saia, M., Seade, J.: The Lê-Greuel formula for functions on analytic spaces. Tohoku Math. J. 68, 439–456 (2016)
Carvalho, R.S., Oréfice-Okamoto, B., Tomazzela, J.N.: \( \mu \)-constant deformations of functions on an ICIS. J. Singul. 19, 163–176 (2019)
Damon, J.N.: Topological invariants of \(\mu \)-constant deformations of complete intersection. Quart. J. Math. Oxford 40, 139–159 (1989)
Gaffney, T.: Polar multiplicities and equisingularity of map germs. Topology 32, 185–223 (1993)
Gaffney, T.: Multiplicities and equisingularity of ICIS germs. Invent. Math. 123, 209–220 (1996)
Giusti, M.: Classification des singularités isolées simples d’intersections complètes. In: Singularities Part I, Proceedings of Symposia in Pure Mathematics, vol. 40, pp. 457–494. AMS (1983)
Greuel, G.-M.: Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten. Math. Ann. 214, 235–266 (1973)
Greuel, G.-M., Hamm, H.A.: Invarianten quasihomogener vollständiger Durchschnitte. Invent. Math. 49, 67–86 (1978)
Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, Hoboken (1976)
Grothendieck, A.: Théorèmes de dualité pour les faisceaux algébriques cohérents. Séminaire Bourbaki 149, 169–193 (1957)
Hartshorne, R.: Local Cohomology. LNM, vol. 41. Springer, Heidelberg (1967). https://doi.org/10.1007/BFb0073971
Hamm, H.: Lokale topologische Eigenschaften komplexer Räume. Math. Ann. 191, 235–252 (1971)
Kunz, E.: Residues and Duality for Projective Algebraic Varieties. American Mathematical Society, Providence (2009)
Lê Dũng Tráng: Calcule du nobmre de cycles évanouissants d’une hypersurface complexe. Ann. Inst. Fourier 23, 261–270 (1973)
Lê Dũng Tráng: Calculation of Milnor number of isolated singularity of complete intersection (in Russian). Funktsional. Analiz i ego Prilozhen. 8, 45–49 (1974)
Looijenga, E.J.N.: Isolated Singular Points on Complete Intersections. London Mathematical Society Lecture Note Series, Cambridge, vol. 77 (1984)
Martin, B., Pfister, G.: Milnor number of complete intersections and Newton polygons. Math. Nachr. 110, 159–177 (1983)
Milnor, J.: Singular points of complex hypersurfaces. Ann. Math. Stud. 61, 591–648 (1968)
Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comput. 82, 91–122 (2017)
Nabeshima, K., Tajima, S.: A new method for computing limiting tangent spaces of isolated hypersurface singularity via algebraic local sohomology. In: Advanced Studies in Pure Mathematics, vol. 78, pp. 331–344 (2018)
Nabeshima, K., Tajima, S.: Computing logarithmic vector fields and Bruce-Roberts Milnor numbers via local cohomology classes. Rev. Roumaine Math. Pures Appl. 64, 521–538 (2019)
Nabeshima, K., Tajima, S.: Alternative algorithms for computing generic \(\mu ^{\ast }\)-sequences and local Euler obstructions of isolated hypersurface singularities. J. Algebra Appl. 18(8) (2019). 1959156 (13pages)
Nabeshima, K., Tajima, S.: Testing zero-dimensionality of varieties at a point. Math. Comput. Sci. 15, 317–331 (2021)
Nguyen, T.T.: Uniform stable radius and Milnor number for non-degenerate isolated complete intersection singularities. arXiv:1912.10655v2 (2019)
Noro, M., Takeshima, T.: Risa/Asir- a computer algebra system. In: Proceedings of International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 387–396. ACM (1992)
Oka, M.: Principal zeta-function of non-degenerate complete intersection singularity. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37, 11–32 (1990)
Palamodov, V.P.: Multiplicity of holomorphic mappings. Funktsional. Analiz i ego Prilozhen. 1, 54–65 (1967)
Saito, K.: Calcule algébrique de la monodromie. Astérisque 7(8), 195–211 (1973)
Tajima, S.: On polar varieties, logarithmic vector fields and holonomic D-modules. RIMS Kôkyûroku Bessatsu 40, 41–51 (2013)
Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. In: Advanced Studies in Pure Mathematics, vol. 56, pp. 341–361 (2009)
Tajima, S., Shibuta, T., Nabeshima, K.: Computing logarithmic vector fields along an ICIS germ via Matlis duality. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 543–562. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_32
Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney, Singularités, à Cargèse. Astérisque 7(8), 285–362 (1973)
Teissier, B.: Variétés polaires. I. Inventiones Mathematicae, vol. 40, pp. 267–292 (1977)
Teissier, B.: Varietes polaires II Multiplicites polaires, sections planes, et conditions de whitney. In: Aroca, J.M., Buchweitz, R., Giusti, M., Merle, M. (eds.) Algebraic Geometry. LNM, vol. 961, pp. 314–491. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0071291
Wall, C. T. C.: Classification of unimodal isolated singularities complete intersections. In: Proceedings of Symposia in Pure Mathematics, vol. 40, Part II, pp. 625–640 (1983)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Tajima, S., Nabeshima, K. (2021). A New Deterministic Method for Computing Milnor Number of an ICIS. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2021. Lecture Notes in Computer Science(), vol 12865. Springer, Cham. https://doi.org/10.1007/978-3-030-85165-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-85165-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85164-4
Online ISBN: 978-3-030-85165-1
eBook Packages: Computer ScienceComputer Science (R0)