Abstract
This paper presents a non-standard way of finding estimates of linear regression parameters for the case of asymmetrically distributed errors. This approach is based on the polynomial maximization method (PMM) and uses the moment and cumulant description of random variables. Analytic expressions are obtained that allow one to find estimates and analyze their accuracy for the degree of the polynomial S = 1 and S = 2. It is shown that the variance of polynomial estimates (for S = 2) in the general case is less than the variance of estimates of the ordinary least squares method, which is a particular case of the polynomial maximization method (for S = 1). The increase in accuracy depends on the values of cumulant coefficients of higher orders of random errors of regression. Statistical modeling (Monte Carlo & bootstrapping method) is performed, the results of which confirm the effectiveness of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ryan, T.P.: Modern Regression Methods, vol. 655. Wiley, Hoboken (2008)
Huber, P.J., Ronchetti, E.M.: Robust Statistics. Wiley, Hoboken (2009). https://doi.org/10.1002/9780470434697
Williams, M.S.: A regression technique accounting for heteroscedastic and asymmetric errors. J. Agric. Biol. Environ. Stat. 2(1), 108–129 (1997). https://doi.org/10.2307/1400643
Prykhodko, S., Makarova, L.: Confidence interval of nonlinear regression of restoration time of network terminal devices. Eastern-Eur. J. Enterp. Technol. 3(4(69)), 26–31 (2014). https://doi.org/10.15587/1729-4061.2014.24663
Box, G.E.P., Cox, D.R.: An analysis of transformations. J. Roy. Stat. Soc. Ser. B 26, 211–246 (1964)
Johnson, N.L.: Systems of frequency curves generated by methods of translation. Biometrika 36, 149–176 (1949)
Zeckhauser, R., Thompson, M.: Linear regression with non-normal error terms. Rev. Econ. Stat. 52(3), 280–286 (1970)
Marazzi, A., Yohai, V.J.: Adaptively truncated maximum likelihood regression with asymmetric errors. J. Stat. Plan. Inference 122(1–2), 271–291 (2004). https://doi.org/10.1016/j.jspi.2003.06.011
Bianco, A.M., Garcia Ben, M., Yohai, V.J.: Robust estimation for linear regression with asymmetric errors. Can. J. Stat. 33(4), 511–528 (2005)
Pal, M.: Consistent moment estimators of regression coefficients in the presence of errors in variables. J. Econometrics 14, 349–364 (1980)
Van Montfort, K., Mooijaart, A., de Leeuw, J.: Regression with errors in variables: estimators based on third order moments. Stat. Neerlandica 41(4), 223–237 (1987)
Dagenais, M.G., Dagenais, D.L.: Higher moment estimators for linear regression models with errors in the variables. J. Econometrics 76(1–2), 193–221 (1997). https://doi.org/10.1016/0304-4076(95)01789-5
Cragg, J.G.: Using higher moments to estimate the simple errors-in-variables model. Rand J. Econ. 28, S71 (1997). https://doi.org/10.2307/3087456
Gillard, J.: Method of moments estimation in linear regression with errors in both variables. Commun. Stat. Theory Methods 43(15), 3208–3222 (2014). https://doi.org/10.1080/03610926.2012.698785
Kunchenko, Y.P., Lega, Y.G.: Estimation of the parameters of random variables by the polynomial maximization method. Naukova dumka, Kiev (1991). (in Russian)
Kunchenko, Y.: Polynomial Parameter Estimations of Close to Gaussian Random Variables. Shaker Verlag, Aachen (2002)
Chertov, O., Slipets, T.: Epileptic seizures diagnose using Kunchenko’s polynomials template matching. In: Fontes, M., Günther, M., Marheineke, N. (eds.) Progress in Industrial Mathematics at ECMI 2012, pp. 245–248. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-05365-3_33
Zabolotnii, S.W., Warsza, Z.L.: Semi-parametric estimation of the change-point of parameters of non-Gaussian sequences by polynomial maximization method. In: Advances in Intelligent Systems and Computing, vol 440. Springer (2016). https://doi.org/10.1007/978-3-319-29357-8_80
Zabolotnii, S.W., Warsza, Z.L.: Semi-parametric polynomial modification of CUSUM algorithms for change-point detection of non-Gaussian sequences. In: XXI IMEKO World Congress Measurement in Research and Industry (2015)
Palahin, V., Juhár, J.: Joint signal parameter estimation in non-Gaussian noise by the method of polynomial maximization. J. Electr. Eng. 67(3), 217–221 (2016). https://doi.org/10.1515/jee-2016-0031
Warsza, Z.L., Zabolotnii, S.W.: A polynomial estimation of measurand parameters for samples of non-Gaussian symmetrically distributed data. In: Advances in Intelligent Systems and Computing, vol. 550. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54042-9_45
Cramér, H.: Mathematical Methods of Statistics (PMS-9). Princeton University Press, Princeton (2016)
Cook, R.D., Weisberg, S.: Residuals and influence in regression. Monographs on Statistics and Applied Probability (1982). https://doi.org/10.2307/1269506
Mathews, J.H., Fink, K.D.: Numerical Methods Using MATLAB, vol. 4. Pearson, London (2004)
Lilliefors, H.W.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967)
Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2013). http://archive.ics.uci.edu/ml
Quinlan, J.R.: Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on Machine Learning, pp. 236–243 (1993)
Breusch, T.S., Pagan, A.R.: A simple test for heteroscedasticity and random coefficient variation. Econometrica J. Econometric Soc. 47, 1287–1294 (1979)
Jarque, C.M., Bera, A.K.: A tests of observations and regression residuals. Int. Stat. Rev. 55, 163–172 (1987)
Efron, B.: Better bootstrap confidence intervals. J. Am. Stat. Assoc. 82(397), 171–185 (1987). https://doi.org/10.1080/01621459.1987.10478410
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Zabolotnii, S., Warsza, Z.L., Tkachenko, O. (2018). Polynomial Estimation of Linear Regression Parameters for the Asymmetric PDF of Errors. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2018. AUTOMATION 2018. Advances in Intelligent Systems and Computing, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-77179-3_75
Download citation
DOI: https://doi.org/10.1007/978-3-319-77179-3_75
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77178-6
Online ISBN: 978-3-319-77179-3
eBook Packages: EngineeringEngineering (R0)