[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Polynomial Estimation of Linear Regression Parameters for the Asymmetric PDF of Errors

  • Conference paper
  • First Online:
Automation 2018 (AUTOMATION 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 743))

Included in the following conference series:

Abstract

This paper presents a non-standard way of finding estimates of linear regression parameters for the case of asymmetrically distributed errors. This approach is based on the polynomial maximization method (PMM) and uses the moment and cumulant description of random variables. Analytic expressions are obtained that allow one to find estimates and analyze their accuracy for the degree of the polynomial S = 1 and S = 2. It is shown that the variance of polynomial estimates (for S = 2) in the general case is less than the variance of estimates of the ordinary least squares method, which is a particular case of the polynomial maximization method (for S = 1). The increase in accuracy depends on the values of cumulant coefficients of higher orders of random errors of regression. Statistical modeling (Monte Carlo & bootstrapping method) is performed, the results of which confirm the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ryan, T.P.: Modern Regression Methods, vol. 655. Wiley, Hoboken (2008)

    Book  Google Scholar 

  2. Huber, P.J., Ronchetti, E.M.: Robust Statistics. Wiley, Hoboken (2009). https://doi.org/10.1002/9780470434697

    Book  MATH  Google Scholar 

  3. Williams, M.S.: A regression technique accounting for heteroscedastic and asymmetric errors. J. Agric. Biol. Environ. Stat. 2(1), 108–129 (1997). https://doi.org/10.2307/1400643

    Article  MathSciNet  Google Scholar 

  4. Prykhodko, S., Makarova, L.: Confidence interval of nonlinear regression of restoration time of network terminal devices. Eastern-Eur. J. Enterp. Technol. 3(4(69)), 26–31 (2014). https://doi.org/10.15587/1729-4061.2014.24663

  5. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. Roy. Stat. Soc. Ser. B 26, 211–246 (1964)

    MATH  Google Scholar 

  6. Johnson, N.L.: Systems of frequency curves generated by methods of translation. Biometrika 36, 149–176 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zeckhauser, R., Thompson, M.: Linear regression with non-normal error terms. Rev. Econ. Stat. 52(3), 280–286 (1970)

    Article  Google Scholar 

  8. Marazzi, A., Yohai, V.J.: Adaptively truncated maximum likelihood regression with asymmetric errors. J. Stat. Plan. Inference 122(1–2), 271–291 (2004). https://doi.org/10.1016/j.jspi.2003.06.011

    Article  MathSciNet  MATH  Google Scholar 

  9. Bianco, A.M., Garcia Ben, M., Yohai, V.J.: Robust estimation for linear regression with asymmetric errors. Can. J. Stat. 33(4), 511–528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pal, M.: Consistent moment estimators of regression coefficients in the presence of errors in variables. J. Econometrics 14, 349–364 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Van Montfort, K., Mooijaart, A., de Leeuw, J.: Regression with errors in variables: estimators based on third order moments. Stat. Neerlandica 41(4), 223–237 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dagenais, M.G., Dagenais, D.L.: Higher moment estimators for linear regression models with errors in the variables. J. Econometrics 76(1–2), 193–221 (1997). https://doi.org/10.1016/0304-4076(95)01789-5

    Article  MathSciNet  MATH  Google Scholar 

  13. Cragg, J.G.: Using higher moments to estimate the simple errors-in-variables model. Rand J. Econ. 28, S71 (1997). https://doi.org/10.2307/3087456

    Article  Google Scholar 

  14. Gillard, J.: Method of moments estimation in linear regression with errors in both variables. Commun. Stat. Theory Methods 43(15), 3208–3222 (2014). https://doi.org/10.1080/03610926.2012.698785

    Article  MathSciNet  MATH  Google Scholar 

  15. Kunchenko, Y.P., Lega, Y.G.: Estimation of the parameters of random variables by the polynomial maximization method. Naukova dumka, Kiev (1991). (in Russian)

    Google Scholar 

  16. Kunchenko, Y.: Polynomial Parameter Estimations of Close to Gaussian Random Variables. Shaker Verlag, Aachen (2002)

    Google Scholar 

  17. Chertov, O., Slipets, T.: Epileptic seizures diagnose using Kunchenko’s polynomials template matching. In: Fontes, M., Günther, M., Marheineke, N. (eds.) Progress in Industrial Mathematics at ECMI 2012, pp. 245–248. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-05365-3_33

  18. Zabolotnii, S.W., Warsza, Z.L.: Semi-parametric estimation of the change-point of parameters of non-Gaussian sequences by polynomial maximization method. In: Advances in Intelligent Systems and Computing, vol 440. Springer (2016). https://doi.org/10.1007/978-3-319-29357-8_80

  19. Zabolotnii, S.W., Warsza, Z.L.: Semi-parametric polynomial modification of CUSUM algorithms for change-point detection of non-Gaussian sequences. In: XXI IMEKO World Congress Measurement in Research and Industry (2015)

    Google Scholar 

  20. Palahin, V., Juhár, J.: Joint signal parameter estimation in non-Gaussian noise by the method of polynomial maximization. J. Electr. Eng. 67(3), 217–221 (2016). https://doi.org/10.1515/jee-2016-0031

    Google Scholar 

  21. Warsza, Z.L., Zabolotnii, S.W.: A polynomial estimation of measurand parameters for samples of non-Gaussian symmetrically distributed data. In: Advances in Intelligent Systems and Computing, vol. 550. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54042-9_45

  22. Cramér, H.: Mathematical Methods of Statistics (PMS-9). Princeton University Press, Princeton (2016)

    Google Scholar 

  23. Cook, R.D., Weisberg, S.: Residuals and influence in regression. Monographs on Statistics and Applied Probability (1982). https://doi.org/10.2307/1269506

  24. Mathews, J.H., Fink, K.D.: Numerical Methods Using MATLAB, vol. 4. Pearson, London (2004)

    Google Scholar 

  25. Lilliefors, H.W.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967)

    Article  Google Scholar 

  26. Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2013). http://archive.ics.uci.edu/ml

  27. Quinlan, J.R.: Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on Machine Learning, pp. 236–243 (1993)

    Google Scholar 

  28. Breusch, T.S., Pagan, A.R.: A simple test for heteroscedasticity and random coefficient variation. Econometrica J. Econometric Soc. 47, 1287–1294 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jarque, C.M., Bera, A.K.: A tests of observations and regression residuals. Int. Stat. Rev. 55, 163–172 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Efron, B.: Better bootstrap confidence intervals. J. Am. Stat. Assoc. 82(397), 171–185 (1987). https://doi.org/10.1080/01621459.1987.10478410

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zygmunt Lech Warsza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zabolotnii, S., Warsza, Z.L., Tkachenko, O. (2018). Polynomial Estimation of Linear Regression Parameters for the Asymmetric PDF of Errors. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2018. AUTOMATION 2018. Advances in Intelligent Systems and Computing, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-77179-3_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77179-3_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77178-6

  • Online ISBN: 978-3-319-77179-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics