[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computing Parametric Standard Bases for Semi-weighted Homogeneous Isolated Hypersurface Singularities

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12291))

Included in the following conference series:

  • 630 Accesses

Abstract

An effective method for computing parametric standard bases of Jacobian ideals is introduced for semi-weighted homogeneous isolated hypersurface singularities. The advantage is that the proposed method is algorithmically simple. The main ideas of the method are the use of a negative weighted term ordering and coefficients in a field of rational functions. The correctness of the method is proved by utilizing algebraic local cohomology classes associated to semi-weighted homogeneous singularities.

This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (C) (18K03214).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Singular implementation of CSS is in the author’s web-page or the following URL. https://www-math.ias.tokushima-u.ac.jp/~nabesima/softwares.html.

References

  1. Arnold, V.I.: Normal forms of functions in neighbourhoods of degenerate critical points. Russ. Math. Surv. 29, 10–50 (1974)

    Article  Google Scholar 

  2. Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of differentiable maps. 1, Birkhäuser (1985)

    Google Scholar 

  3. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-0 – a computer algebra system for polynomial computations (2016). http://www.singular.uni-kl.de

  4. Greuel, G.-M.: Constant milnor number implies constant multiplicity for quasi-homogeneous singularities. Manuscripta Math. 56, 159–166 (1986)

    Article  MathSciNet  Google Scholar 

  5. Greuel, G.-M., Hertling, C., Pfister, G.: Moduli spaces of semiquasihomogeneous singularities with fixed principal part. J. Alg. Geom. 6, 169–199 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn. Springer-Verlag, Berlin (2007)

    MATH  Google Scholar 

  7. Grothendieck, A.: Local cohomology, notes by R. Hartshorne. Lecture Notes in Mathematics, vol. 41. Springer (1967)

    Google Scholar 

  8. Hashemi, A., Kazemi, M.: Parametric standard bases and their applications. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 179–196. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2_13

    Chapter  Google Scholar 

  9. Kunz, E.: Residues and Duality for Projective Algebraic Varieties. American Mathematical Society, New York (2009)

    Google Scholar 

  10. Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local cohomology classes associated with semi-quasi homogeneous singularities and standard bases. In: Proceeding of ISSAC 2014, pp. 351–358. ACM (2014)

    Google Scholar 

  11. Nabeshima, K., Tajima, S.: Computing logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities. Proceedings of ISSAC 2015, pp. 291–298. ACM (2015)

    Google Scholar 

  12. Nabeshima, K., Tajima, S.: Efficient computation of algebraic local cohomology classes and change of ordering for zero-dimensional standard bases. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 334–348. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24021-3_25

    Chapter  Google Scholar 

  13. Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comp. 82, 91–122 (2017)

    Article  MathSciNet  Google Scholar 

  14. Nakamura, Y., Tajima, S.: On weighted-degrees for algebraic local cohomologies associated with semiquasihomogeneous singularities. Adv. Stud. Pure Math. 46, 105–117 (2007)

    Article  MathSciNet  Google Scholar 

  15. Robbiano, L.: Term orderings on the polynomial ring. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204, pp. 513–517. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15984-3_321

    Chapter  Google Scholar 

  16. Saeki, O.: Topological invariance of weights for weighted homogeneous isolated singularities in \(C^3\). Proc. AMS 103, 905–909 (1988)

    MATH  Google Scholar 

  17. Suzuki, M.: Normal forms of quasihomogeneous functions with inner modality equal to five. Proc. Jpn. Acad. 57, 160–163 (1981)

    Article  MathSciNet  Google Scholar 

  18. Suzuki, M.: Classification of quasihomogeneous polynomials of corank three with inner modality \(\le 14\). Saitama Math. J. 31, 1–25 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Suzuki, M.: Normal forms of quasihomogeneous functions with inner modality \(\le 9\). Proc. Institute of Natural Sciences, Nihon University 55, 175–218 (2020)

    Google Scholar 

  20. Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology class. J. Symb. Comp. 44, 435–448 (2009)

    Article  MathSciNet  Google Scholar 

  21. Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)

    Article  MathSciNet  Google Scholar 

  22. Varchenko, A.N.: A lower bound for the codimension of the stratum \( \mu \) constant in terms of the mixed Hodge structure. Vest. Mosk. Univ. Mat. 37, 29–31 (1982)

    Google Scholar 

  23. Yoshinaga, E., Suzuki, M.: Normal forms of non-degenerate quasihomogeneous functions with inner modality \(\le 4\). Inventiones Math. 55, 185–206 (1979)

    Article  MathSciNet  Google Scholar 

  24. Yoshinaga, E.: Topological principal part of analytic functions. Trans. Amer. Math. Soc. 314, 803–813 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsusuke Nabeshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nabeshima, K. (2020). Computing Parametric Standard Bases for Semi-weighted Homogeneous Isolated Hypersurface Singularities. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics