Abstract
An effective method for computing parametric standard bases of Jacobian ideals is introduced for semi-weighted homogeneous isolated hypersurface singularities. The advantage is that the proposed method is algorithmically simple. The main ideas of the method are the use of a negative weighted term ordering and coefficients in a field of rational functions. The correctness of the method is proved by utilizing algebraic local cohomology classes associated to semi-weighted homogeneous singularities.
This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (C) (18K03214).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The Singular implementation of CSS is in the author’s web-page or the following URL. https://www-math.ias.tokushima-u.ac.jp/~nabesima/softwares.html.
References
Arnold, V.I.: Normal forms of functions in neighbourhoods of degenerate critical points. Russ. Math. Surv. 29, 10–50 (1974)
Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of differentiable maps. 1, Birkhäuser (1985)
Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-0 – a computer algebra system for polynomial computations (2016). http://www.singular.uni-kl.de
Greuel, G.-M.: Constant milnor number implies constant multiplicity for quasi-homogeneous singularities. Manuscripta Math. 56, 159–166 (1986)
Greuel, G.-M., Hertling, C., Pfister, G.: Moduli spaces of semiquasihomogeneous singularities with fixed principal part. J. Alg. Geom. 6, 169–199 (1997)
Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn. Springer-Verlag, Berlin (2007)
Grothendieck, A.: Local cohomology, notes by R. Hartshorne. Lecture Notes in Mathematics, vol. 41. Springer (1967)
Hashemi, A., Kazemi, M.: Parametric standard bases and their applications. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 179–196. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2_13
Kunz, E.: Residues and Duality for Projective Algebraic Varieties. American Mathematical Society, New York (2009)
Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local cohomology classes associated with semi-quasi homogeneous singularities and standard bases. In: Proceeding of ISSAC 2014, pp. 351–358. ACM (2014)
Nabeshima, K., Tajima, S.: Computing logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities. Proceedings of ISSAC 2015, pp. 291–298. ACM (2015)
Nabeshima, K., Tajima, S.: Efficient computation of algebraic local cohomology classes and change of ordering for zero-dimensional standard bases. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 334–348. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24021-3_25
Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comp. 82, 91–122 (2017)
Nakamura, Y., Tajima, S.: On weighted-degrees for algebraic local cohomologies associated with semiquasihomogeneous singularities. Adv. Stud. Pure Math. 46, 105–117 (2007)
Robbiano, L.: Term orderings on the polynomial ring. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204, pp. 513–517. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15984-3_321
Saeki, O.: Topological invariance of weights for weighted homogeneous isolated singularities in \(C^3\). Proc. AMS 103, 905–909 (1988)
Suzuki, M.: Normal forms of quasihomogeneous functions with inner modality equal to five. Proc. Jpn. Acad. 57, 160–163 (1981)
Suzuki, M.: Classification of quasihomogeneous polynomials of corank three with inner modality \(\le 14\). Saitama Math. J. 31, 1–25 (2017)
Suzuki, M.: Normal forms of quasihomogeneous functions with inner modality \(\le 9\). Proc. Institute of Natural Sciences, Nihon University 55, 175–218 (2020)
Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology class. J. Symb. Comp. 44, 435–448 (2009)
Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)
Varchenko, A.N.: A lower bound for the codimension of the stratum \( \mu \) constant in terms of the mixed Hodge structure. Vest. Mosk. Univ. Mat. 37, 29–31 (1982)
Yoshinaga, E., Suzuki, M.: Normal forms of non-degenerate quasihomogeneous functions with inner modality \(\le 4\). Inventiones Math. 55, 185–206 (1979)
Yoshinaga, E.: Topological principal part of analytic functions. Trans. Amer. Math. Soc. 314, 803–813 (1989)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Nabeshima, K. (2020). Computing Parametric Standard Bases for Semi-weighted Homogeneous Isolated Hypersurface Singularities. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-60026-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60025-9
Online ISBN: 978-3-030-60026-6
eBook Packages: Computer ScienceComputer Science (R0)