[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Computation of Algebraic Local Cohomology Classes and Change of Ordering for Zero-Dimensional Standard Bases

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9301))

Included in the following conference series:

Abstract

A new effective algorithm for computing a set of algebraic local cohomology classes is presented. The key ingredient of the proposed algorithm is to utilize a standard basis. As the application, an algorithm is given for the conversion of a standard basis of a zero-dimensional ideal with respect to any given local ordering into a standard basis with respect to any other local ordering, in the formal power series ring. The new algorithm always outputs a reduced standard basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brodmann, M.P., Sharp, R.Y.: Local Cohomology. Cambridge Univ. Press (1998)

    Google Scholar 

  2. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-6 - A computer algebra system for polynomial computations (2012). http://www.singular.uni-kl.de

  3. Faugère, J., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation 16, 329–344 (1993)

    Google Scholar 

  4. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn. Springer(2008)

    Google Scholar 

  5. Grothendieck, A.: Théorèmes de dualité pour les faisceaux algébriques cohérents. Séminaire Bourbaki 149 (1957)

    Google Scholar 

  6. Grothendieck, A.: Local Cohomology. Notes by Hartshorne, R. Lecture Notes in Math., vol. 41. Springer (1967)

    Google Scholar 

  7. Lazard, D.: Gröbner bases, Gaussian elimination, and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)

    Google Scholar 

  8. Lyubeznik, G.: Local Cohomology and its Applications, Dekker (2002)

    Google Scholar 

  9. Mora, T.: An algorithm to compute the equations of tangent cones. In: Calmet, J. (ed.) EUROCAM 1982. LNCS, vol. 144, pp. 158–165. Springer, Heidelberg (1982)

    Google Scholar 

  10. Mora, T., Pfister, G., Traverso, C.: An introduction to the tangent cone algorithm. Adv. in Computing Research, Issued in Robotics and Nonlinear Geometry 6, 199–270 (1992)

    Google Scholar 

  11. Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases. In: Proc. ISSAC 2014, pp. 351–358. ACM-Press (2014)

    Google Scholar 

  12. Nabeshima, K., Tajima, S.: Logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities. In: Proc. ISSAC 2015. ACM-Press (2015) (to appear)

    Google Scholar 

  13. Nakamura, Y., Tajima, S.: On weighted-degrees for algebraic local cohomologies associated with semiquasihomogeneous singularities. Advanced Studies in Pure Mathematics 46, 105–117 (2007)

    Google Scholar 

  14. Noro, M., Takeshima, T.: Risa/Asir - a computer algebra system. In: Proc. ISSAC 1992, pp. 387–396. ACM-Press (1992). http://www.math.kobe-u.ac.jp/Asir/asir.html

  15. Tajima, S., Nakamura, Y.: Algebraic local cohomology class attached to quasi-homogeneous isolated hypersurface singularities. Publications of the Research Institute for Mathematical Sciences 41, 1–10 (2005)

    Google Scholar 

  16. Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology class. Journal of Symbolic Computation 44, 435–448 (2009)

    Google Scholar 

  17. Tajima, S., Nakamura, Y.: Algebraic local cohomology classes attached to unimodal singularities. Publications of the Research Institute for Mathematical Sciences 48, 21–43 (2012)

    Google Scholar 

  18. Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Advanced Studies in Pure Mathematics 56, 341–361 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsusuke Nabeshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nabeshima, K., Tajima, S. (2015). Efficient Computation of Algebraic Local Cohomology Classes and Change of Ordering for Zero-Dimensional Standard Bases. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2015. Lecture Notes in Computer Science(), vol 9301. Springer, Cham. https://doi.org/10.1007/978-3-319-24021-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24021-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24020-6

  • Online ISBN: 978-3-319-24021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics