Abstract
A new effective algorithm for computing a set of algebraic local cohomology classes is presented. The key ingredient of the proposed algorithm is to utilize a standard basis. As the application, an algorithm is given for the conversion of a standard basis of a zero-dimensional ideal with respect to any given local ordering into a standard basis with respect to any other local ordering, in the formal power series ring. The new algorithm always outputs a reduced standard basis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brodmann, M.P., Sharp, R.Y.: Local Cohomology. Cambridge Univ. Press (1998)
Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-6 - A computer algebra system for polynomial computations (2012). http://www.singular.uni-kl.de
Faugère, J., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation 16, 329–344 (1993)
Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn. Springer(2008)
Grothendieck, A.: Théorèmes de dualité pour les faisceaux algébriques cohérents. Séminaire Bourbaki 149 (1957)
Grothendieck, A.: Local Cohomology. Notes by Hartshorne, R. Lecture Notes in Math., vol. 41. Springer (1967)
Lazard, D.: Gröbner bases, Gaussian elimination, and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)
Lyubeznik, G.: Local Cohomology and its Applications, Dekker (2002)
Mora, T.: An algorithm to compute the equations of tangent cones. In: Calmet, J. (ed.) EUROCAM 1982. LNCS, vol. 144, pp. 158–165. Springer, Heidelberg (1982)
Mora, T., Pfister, G., Traverso, C.: An introduction to the tangent cone algorithm. Adv. in Computing Research, Issued in Robotics and Nonlinear Geometry 6, 199–270 (1992)
Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases. In: Proc. ISSAC 2014, pp. 351–358. ACM-Press (2014)
Nabeshima, K., Tajima, S.: Logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities. In: Proc. ISSAC 2015. ACM-Press (2015) (to appear)
Nakamura, Y., Tajima, S.: On weighted-degrees for algebraic local cohomologies associated with semiquasihomogeneous singularities. Advanced Studies in Pure Mathematics 46, 105–117 (2007)
Noro, M., Takeshima, T.: Risa/Asir - a computer algebra system. In: Proc. ISSAC 1992, pp. 387–396. ACM-Press (1992). http://www.math.kobe-u.ac.jp/Asir/asir.html
Tajima, S., Nakamura, Y.: Algebraic local cohomology class attached to quasi-homogeneous isolated hypersurface singularities. Publications of the Research Institute for Mathematical Sciences 41, 1–10 (2005)
Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology class. Journal of Symbolic Computation 44, 435–448 (2009)
Tajima, S., Nakamura, Y.: Algebraic local cohomology classes attached to unimodal singularities. Publications of the Research Institute for Mathematical Sciences 48, 21–43 (2012)
Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Advanced Studies in Pure Mathematics 56, 341–361 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Nabeshima, K., Tajima, S. (2015). Efficient Computation of Algebraic Local Cohomology Classes and Change of Ordering for Zero-Dimensional Standard Bases. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2015. Lecture Notes in Computer Science(), vol 9301. Springer, Cham. https://doi.org/10.1007/978-3-319-24021-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-24021-3_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24020-6
Online ISBN: 978-3-319-24021-3
eBook Packages: Computer ScienceComputer Science (R0)