[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Good Pivots for Small Sparse Matrices

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Abstract

For sparse matrices up to size \(8\times 8\), we determine optimal choices for pivot selection in Gaussian elimination. It turns out that they are slightly better than the pivots chosen by a popular pivot selection strategy, so there is some room for improvement. We then create a pivot selection strategy using machine learning and find that it indeed leads to a small improvement compared to the classical strategy.

M.K. was supported by the Austrian FWF grants F50-04, W1214-13, and P31571.

J.M. was supported by the Land Oberüsterreich through the LIT-AI Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brualdi, R.A., et al.: Combinatorial Matrix Theory. Springer, New York (1991). https://doi.org/10.1007/978-3-319-70953-6

    Book  MATH  Google Scholar 

  2. Corless, R.M., Thornton, S.E.: The bohemian eigenvalue project. ACM Commun. Comput. Algebra 50(4), 158–160 (2017). https://doi.org/10.1145/3055282.3055289

    Article  MATH  Google Scholar 

  3. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  4. England, M.: Machine learning for mathematical software. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol. 10931, pp. 165–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96418-8_20

    Chapter  MATH  Google Scholar 

  5. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases. J. Pure Appl. Algebra 139(1–3), 61–88 (1999)

    Article  MathSciNet  Google Scholar 

  6. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Dordrecht (1992)

    Book  Google Scholar 

  7. Harary, F., Palmer, E.M.: Graphical Enumeration. Academic Press, New York (1973)

    MATH  Google Scholar 

  8. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.: Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 92–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3_8

    Chapter  Google Scholar 

  9. Koutschan, C.: Creative telescoping for holonomic functions. In: Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions. Texts and Monographs in Symbolic Computation, pp. 171–194. Springer (2013). https://doi.org/10.1007/978-3-7091-1616-6_7

  10. Markowitz, H.M.: The elimination form of the inverse and its application to linear programming. Manage. Sci. 3(3), 255–269 (1957). http://www.jstor.org/stable/2627454

    Article  MathSciNet  Google Scholar 

  11. McKay, B.D., Piperno, A.: Practical graph isomorphism, ii. J. Symbolic Comput. 60, 94–112 (2014). https://doi.org/10.1016/j.jsc.2013.09.003

    Article  MathSciNet  MATH  Google Scholar 

  12. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  13. Peifer, D., Stillman, M., Halpern-Leistner, D.: Learning selection strategies in buchberger’s algorithm (2020). arXiv preprint arXiv:2005.01917

  14. Sloane, N.J.A.: The on-line encyclopedia of integer sequences (2020). https://oeis.org/

  15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  16. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods 2(1), 77–79 (1981). https://doi.org/10.1137/0602010

    Article  MathSciNet  MATH  Google Scholar 

  17. Živković, M.: Classification of small (0,1) matrices. Linear Algebra Appl. 414(1), 310–346 (2006). https://doi.org/10.1016/j.laa.2005.10.010

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Moosbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kauers, M., Moosbauer, J. (2020). Good Pivots for Small Sparse Matrices. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics