Abstract
Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akbarpour, B., Paulson, L.: MetiTarski: An automatic theorem prover for real-valued special functions. Journal of Automated Reasoning 44(3), 175–205 (2010)
Alpaydin, E.: Introduction to machine learning. MIT Press (2004)
Arnon, D., Collins, G., McCallum, S.: Cylindrical algebraic decomposition I: The basic algorithm. SIAM Journal of Computing 13, 865–877 (1984)
Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424 (2000)
Basu, S.: Algorithms in real algebraic geometry: A survey (2011), www.math.purdue.edu/~sbasu/raag_survey2011_final.pdf
Boyan, J., Freitag, D., Joachims, T.: A machine learning architecture for optimizing web search engines. In: AAAI Workshop on Internet Based Information Systems, pp. 1–8 (1996)
Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.: Cylindrical algebraic decompositions for boolean combinations. In: Proc. ISSAC 2013, pp. 125–132. ACM (2013)
Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem formulation for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 19–34. Springer, Heidelberg (2013)
Bridge, J.P.: Machine learning and automated theorem proving. University of Cambridge Computer Laboratory Technical Report UCAM-CL-TR-792 (2010), http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-792.pdf
Bridge, J., Holden, S., Paulson, L.: Machine learning for first-order theorem proving. Journal of Automated Reasoning, 1–32 (2014)
Brown, C.: Improved projection for cylindrical algebraic decomposition. Journal of Symbolic Computation 32(5), 447–465 (2001)
Brown, C.: QEPCAD B: A program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bulletin 37(4), 97–108 (2003)
Brown, C.: Companion to the Tutorial: Cylindrical algebraic decomposition. Presented at ISSAC 2004 (2004), www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
Brown, C., Davenport, J.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: Proc. ISSAC 2007, pp. 54–60. ACM (2007)
Brown, C., Kahoui, M.E., Novotni, D., Weber, A.: Algorithmic methods for investigating equilibria in epidemic modelling. Journal of Symbolic Computation 41, 1157–1173 (2006)
Carette, J.: Understanding expression simplification. In: Proc. ISSAC 2004, pp. 72–79. ACM (2004)
Chen, C., Maza, M.M., Xia, B., Yang, L.: Computing cylindrical algebraic decomposition via triangular decomposition. In: Proc. ISSAC 2009, pp. 95–102. ACM (2009)
Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)
Collins, G.: Quantifier elimination by cylindrical algebraic decomposition – 20 years of progress. In: Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts & Monographs in Symbolic Computation, pp. 8–23. Springer (1998)
Collins, G., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation 12, 299–328 (1991)
Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press (2000)
Davenport, J., Bradford, R., England, M., Wilson, D.: Program verification in the presence of complex numbers, functions with branch cuts etc. In: Proc. SYNASC 2012, pp. 83–88. IEEE (2012)
Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proc. ISSAC 2004, pp. 111–118. ACM (2004)
Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. SIGSAM Bulletin 31(2), 2–9 (1997)
Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. In: Algorithmic Algebra and Number Theory, pp. 221–247. Springer (1998)
England, M.: An implementation of CAD in Maple utilising problem formulation, equational constraints and truth-table invariance. University of Bath Department of Computer Science Technical Report 2013-04 (2013), http://opus.bath.ac.uk/35636/
Forsyth, R., Rada, R.: Machine learning: Applications in expert systems and information retrieval. Halsted Press (1986)
Fotiou, I., Parrilo, P., Morari, M.: Nonlinear parametric optimization using cylindrical algebraic decomposition. In: 2005 European Control Conference on Decision and Control, CDC-ECC 2005, pp. 3735–3740 (2005)
Hong, H.: An improvement of the projection operator in cylindrical algebraic decomposition. In: Proc. ISSAC 1990, pp. 261–264. ACM (1990)
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)
Huang, Z., Paulson, L.: An application of machine learning to rcf decision procedures. In: Proc. 20th Automated Reasoning Workshop (2013)
Hsu, C., Chang, C., Lin, C.: A practical guide to support vector classification (2003)
Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. In: Proc. SNC 2009, pp. 55–64 (2009)
Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel Methods - Support Vector Learning, pp. 169–184. MIT Press (1999)
Joachims, T.: A support vector method for multivariate performance measures. In: Proc. 22nd Intl. Conf. on Machine Learning, pp. 377–384. ACM (2005)
Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)
McCallum, S.: An improved projection operation for cylindrical algebraic decomposition. In: Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts & Monographs in Symbolic Computation, pp. 242–268. Springer (1998)
McCallum, S.: On projection in CAD-based quantifier elimination with equational constraint. In: Proc. ISSAC 1999, pp. 145–149. ACM (1999)
McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics 5(4), 115–133 (1943)
Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review 65(6), 386 (1958)
Schölkopf, B., Tsuda, K., Vert, J.-P.: Kernel methods in computational biology. MIT Press (2004)
Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys (CSUR) 34(1), 1–47 (2002)
Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press (2004)
Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning perspective. Autonomous Robots 8(3), 345–383 (2000)
Strzeboński, A.: Cylindrical algebraic decomposition using validated numerics. Journal of Symbolic Computation 41(9), 1021–1038 (2006)
Strzeboński, A.: Solving polynomial systems over semialgebraic sets represented by cylindrical algebraic formulas. In: Proc. ISSAC 2012, pp. 335–342. ACM (2012)
Tarski, A.: A decision method for elementary algebra and geometry. In: Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 24–84. Springer (1998)
Wilson, D., Bradford, R., Davenport, J.: A repository for CAD examples. ACM Communications in Computer Algebra 46(3), 67–69 (2012)
Wilson, D., Davenport, J., England, M., Bradford, R.: A “piano movers” problem reformulated. In: Proc. SYNASC 2013. IEEE (2013)
The benchmarks used in solving nonlinear arithmetic. New York University (2012), http://cs.nyu.edu/~dejan/nonlinear/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J. (2014). Applying Machine Learning to the Problem of Choosing a Heuristic to Select the Variable Ordering for Cylindrical Algebraic Decomposition. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds) Intelligent Computer Mathematics. CICM 2014. Lecture Notes in Computer Science(), vol 8543. Springer, Cham. https://doi.org/10.1007/978-3-319-08434-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-08434-3_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08433-6
Online ISBN: 978-3-319-08434-3
eBook Packages: Computer ScienceComputer Science (R0)