Abstract
Fueled by the power of deep learning, stereo vision has made unprecedented advances in recent years. Existing deep stereo models, however, can be hardly deployed to real-world scenarios where the data comes on-the-fly without any ground-truth information, and the data distribution continuously changes over time. Recently, Tonioni et al. proposed the first real-time self-adaptive deep stereo system (MADNet) to address this problem, which, however, still runs at a relatively low speed with not so satisfactory performance. In this paper, we significantly upgrade their work in both speed and accuracy by incorporating two key components. First, instead of adopting only the image reconstruction loss as the proxy supervision, a second more powerful supervision is proposed, termed Knowledge Reverse Distillation (KRD), to guide the learning of deep stereo models. Second, we introduce a straightforward yet surprisingly effective Adapt-or-Hold (AoH) mechanism to automatically determine whether or not to fine-tune the stereo model in the online environment. Both components are lightweight and can be integrated into MADNet with only a few lines of code. Experiments demonstrate that the two proposed components improve the system by a large margin in both speed and accuracy. Our final system is twice as fast as MADNet, meanwhile attains considerable superior performance on the popular benchmark datasets KITTI.
This work is supported by National Natural Science Foundation of China (61976186), the Major Scientfic Research Project of Zhejiang Lab (No. 2019KD0AC01) and Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
Pang, J., Sun, W., Ren, J.S., Yang, C., Yan, Q.: Cascade residual learning: a two-stage convolutional neural network for stereo matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 887–895 (2017)
Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5418 (2018)
Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3273–3282 (2019)
Zhang, F., Prisacariu, V., Yang, R., Torr, P.H.: GA-net: guided aggregation net for end-to-end stereo matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 185–194 (2019)
Tonioni, A., Poggi, M., Mattoccia, S., Di Stefano, L.: Unsupervised adaptation for deep stereo. In: IEEE International Conference on Computer Vision (2017)
Pang, J., et al.: Zoom and learn: generalizing deep stereo matching to novel domains. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
Tonioni, A., Tosi, F., Poggi, M., Mattoccia, S., Stefano, L.D.: Real-time self-adaptive deep stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 195–204 (2019)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32, 1231–1237 (2013)
Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19315-6_3
Wang, X., Li, Z., Tao, D.: Subspaces indexing model on grassmann manifold for image search. IEEE Trans. Image Process. 20, 2627–2635 (2011)
Qiu, J., Wang, X., Maybank, S.J., Tao, D.: World from blur. In: IEEE Conference on Computer Vision and Pattern Recognition. In: CVPR, pp. 8493–8504 (2019)
Wang, X., Türetken, E., Fleuret, F., Fua, P.: Tracking interacting objects using intertwined flows. IEEE Trans. Pattern Anal. Mach. Intell. 38, 2312–2326 (2016)
Lan, L., Wang, X., Hua, G., Huang, T.S., Tao, D.: Semi-online multi-people tracking by re-identification. Int. J. Comput. Vis. 128, 1937–1955 (2020)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)
Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: 18th International Conference on Pattern Recognition (ICPR2006), vol. 3, pp. 15–18. IEEE (2006)
Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. Technical report, Cornell University (2001)
Yang, Y., Qiu, J., Song, M., Tao, D., Wang, X.: Distilling knowledge from graph convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Zbontar, J., et al.: Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res. 17, 2 (2016)
Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: IEEE International Conference on Computer Vision, pp. 66–75 (2017)
Wang, X., Türetken, E., Fleuret, F., Fua, P.: Tracking interacting objects optimally using integer programming. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 17–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_2
Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank and sparse decomposition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Yang, E., Deng, C., Li, C., Liu, W., Li, J., Tao, D.: Shared predictive cross-modal deep quantization. IEEE Trans. Neural Netw. Learn. Syst. 29, 5292–5303 (2018)
Yin, X., Wang, X., Yu, J., Zhang, M., Fua, P., Tao, D.: FishEyeRecNet: a multi-context collaborative deep network for fisheye image rectification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 475–490. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_29
Deng, C., Yang, E., Liu, T., Li, J., Liu, W., Tao, D.: Unsupervised semantic-preserving adversarial hashing for image search. IEEE Trans. Image Process. 28, 4032–4044 (2019)
Wang, J., Huang, S., Wang, X., Tao, D.: Not all parts are created equal: 3D pose estimation by modeling bi-directional dependencies of body parts. In: IEEE International Conference on Computer Vision (ICCV) (2019)
Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45
Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)
Ye, J., Ji, Y., Wang, X., Ou, K., Tao, D., Song, M.: Student becoming the master: knowledge amalgamation for joint scene parsing, depth estimation, and more. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Poggi, M., Mattoccia, S.: Learning from scratch a confidence measure. In: BMVC (2016)
Zhong, Y., Li, H., Dai, Y.: Open-world stereo video matching with deep RNN. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 104–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_7
Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3, 47–57 (2016)
Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529 (2015)
Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv preprint arXiv:1511.05952 (2015)
Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)
Wang, Z., et al.: Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581 (2015)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)
Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3061–3070 (2015)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)
Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017)
Li, A., Yuan, Z.: Occlusion aware stereo matching via cooperative unsupervised learning. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 197–213. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_13
Aleotti, F., Tosi, F., Zhang, L., Poggi, M., Mattoccia, S.: Reversing the cycle: self-supervised deep stereo through enhanced monocular distillation. arXiv preprint arXiv:2008.07130 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 58477 KB)
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, H., Wang, X., Song, J., Lei, J., Song, M. (2021). Faster Self-adaptive Deep Stereo. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12622. Springer, Cham. https://doi.org/10.1007/978-3-030-69525-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-69525-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69524-8
Online ISBN: 978-3-030-69525-5
eBook Packages: Computer ScienceComputer Science (R0)