[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Faster Self-adaptive Deep Stereo

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12622))

Included in the following conference series:

  • 1150 Accesses

Abstract

Fueled by the power of deep learning, stereo vision has made unprecedented advances in recent years. Existing deep stereo models, however, can be hardly deployed to real-world scenarios where the data comes on-the-fly without any ground-truth information, and the data distribution continuously changes over time. Recently, Tonioni et al. proposed the first real-time self-adaptive deep stereo system (MADNet) to address this problem, which, however, still runs at a relatively low speed with not so satisfactory performance. In this paper, we significantly upgrade their work in both speed and accuracy by incorporating two key components. First, instead of adopting only the image reconstruction loss as the proxy supervision, a second more powerful supervision is proposed, termed Knowledge Reverse Distillation (KRD), to guide the learning of deep stereo models. Second, we introduce a straightforward yet surprisingly effective Adapt-or-Hold (AoH) mechanism to automatically determine whether or not to fine-tune the stereo model in the online environment. Both components are lightweight and can be integrated into MADNet with only a few lines of code. Experiments demonstrate that the two proposed components improve the system by a large margin in both speed and accuracy. Our final system is twice as fast as MADNet, meanwhile attains considerable superior performance on the popular benchmark datasets KITTI.

This work is supported by National Natural Science Foundation of China (61976186), the Major Scientfic Research Project of Zhejiang Lab (No. 2019KD0AC01) and Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  2. Pang, J., Sun, W., Ren, J.S., Yang, C., Yan, Q.: Cascade residual learning: a two-stage convolutional neural network for stereo matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 887–895 (2017)

    Google Scholar 

  3. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5418 (2018)

    Google Scholar 

  4. Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3273–3282 (2019)

    Google Scholar 

  5. Zhang, F., Prisacariu, V., Yang, R., Torr, P.H.: GA-net: guided aggregation net for end-to-end stereo matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 185–194 (2019)

    Google Scholar 

  6. Tonioni, A., Poggi, M., Mattoccia, S., Di Stefano, L.: Unsupervised adaptation for deep stereo. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  7. Pang, J., et al.: Zoom and learn: generalizing deep stereo matching to novel domains. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  8. Tonioni, A., Tosi, F., Poggi, M., Mattoccia, S., Stefano, L.D.: Real-time self-adaptive deep stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 195–204 (2019)

    Google Scholar 

  9. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32, 1231–1237 (2013)

    Article  Google Scholar 

  10. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19315-6_3

    Chapter  Google Scholar 

  11. Wang, X., Li, Z., Tao, D.: Subspaces indexing model on grassmann manifold for image search. IEEE Trans. Image Process. 20, 2627–2635 (2011)

    Article  MathSciNet  Google Scholar 

  12. Qiu, J., Wang, X., Maybank, S.J., Tao, D.: World from blur. In: IEEE Conference on Computer Vision and Pattern Recognition. In: CVPR, pp. 8493–8504 (2019)

    Google Scholar 

  13. Wang, X., Türetken, E., Fleuret, F., Fua, P.: Tracking interacting objects using intertwined flows. IEEE Trans. Pattern Anal. Mach. Intell. 38, 2312–2326 (2016)

    Article  Google Scholar 

  14. Lan, L., Wang, X., Hua, G., Huang, T.S., Tao, D.: Semi-online multi-people tracking by re-identification. Int. J. Comput. Vis. 128, 1937–1955 (2020)

    Article  MathSciNet  Google Scholar 

  15. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)

    Article  Google Scholar 

  16. Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: 18th International Conference on Pattern Recognition (ICPR2006), vol. 3, pp. 15–18. IEEE (2006)

    Google Scholar 

  17. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. Technical report, Cornell University (2001)

    Google Scholar 

  18. Yang, Y., Qiu, J., Song, M., Tao, D., Wang, X.: Distilling knowledge from graph convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  19. Zbontar, J., et al.: Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res. 17, 2 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: IEEE International Conference on Computer Vision, pp. 66–75 (2017)

    Google Scholar 

  21. Wang, X., Türetken, E., Fleuret, F., Fua, P.: Tracking interacting objects optimally using integer programming. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 17–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_2

    Chapter  Google Scholar 

  22. Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank and sparse decomposition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  23. Yang, E., Deng, C., Li, C., Liu, W., Li, J., Tao, D.: Shared predictive cross-modal deep quantization. IEEE Trans. Neural Netw. Learn. Syst. 29, 5292–5303 (2018)

    Article  Google Scholar 

  24. Yin, X., Wang, X., Yu, J., Zhang, M., Fua, P., Tao, D.: FishEyeRecNet: a multi-context collaborative deep network for fisheye image rectification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 475–490. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_29

    Chapter  Google Scholar 

  25. Deng, C., Yang, E., Liu, T., Li, J., Liu, W., Tao, D.: Unsupervised semantic-preserving adversarial hashing for image search. IEEE Trans. Image Process. 28, 4032–4044 (2019)

    Article  MathSciNet  Google Scholar 

  26. Wang, J., Huang, S., Wang, X., Tao, D.: Not all parts are created equal: 3D pose estimation by modeling bi-directional dependencies of body parts. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  27. Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45

    Chapter  Google Scholar 

  28. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)

    Google Scholar 

  29. Ye, J., Ji, Y., Wang, X., Ou, K., Tao, D., Song, M.: Student becoming the master: knowledge amalgamation for joint scene parsing, depth estimation, and more. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  30. Poggi, M., Mattoccia, S.: Learning from scratch a confidence measure. In: BMVC (2016)

    Google Scholar 

  31. Zhong, Y., Li, H., Dai, Y.: Open-world stereo video matching with deep RNN. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 104–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_7

    Chapter  Google Scholar 

  32. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3, 47–57 (2016)

    Article  Google Scholar 

  33. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  34. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529 (2015)

    Article  Google Scholar 

  35. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv preprint arXiv:1511.05952 (2015)

  36. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  37. Wang, Z., et al.: Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581 (2015)

  38. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  39. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3061–3070 (2015)

    Google Scholar 

  40. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  41. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017)

    Google Scholar 

  42. Li, A., Yuan, Z.: Occlusion aware stereo matching via cooperative unsupervised learning. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 197–213. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_13

    Chapter  Google Scholar 

  43. Aleotti, F., Tosi, F., Zhang, L., Poggi, M., Mattoccia, S.: Reversing the cycle: self-supervised deep stereo through enhanced monocular distillation. arXiv preprint arXiv:2008.07130 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingli Song .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 58477 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Wang, X., Song, J., Lei, J., Song, M. (2021). Faster Self-adaptive Deep Stereo. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12622. Springer, Cham. https://doi.org/10.1007/978-3-030-69525-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69525-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69524-8

  • Online ISBN: 978-3-030-69525-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics