Abstract
Occlusion as a core challenge for stereo computation has attracted extensive research efforts in the past decades. Apart from its adverse impact, occlusion itself is a crucial clue which has not been exploited in the field of CNN based stereo. In this paper, we argue that a deep stereo framework benefits from reasoning occlusion in advance. We present an occlusion aware stereo network comprising a prior occlusion inferring module and a subsequent disparity computation module. The occlusion inferring module is a sub-network that directly starts from images, which averts the sophisticated procedure to iteratively estimate occlusion with disparity. We additionally propose cooperative unsupervised learning of occlusion and disparity, based on a different hybrid loss enforcing them to be consensus and trained alternatively to reach convergence. The comprehensive experimental analyses show that our method achieves state-of-the-art results among unsupervised learning frameworks, and is even comparable to several supervised methods.
Supported by the National Key R&D Program of China (No. 2016YFB1001001) and the National Natural Science Foundation of China (No. 61573280, No. 91648121).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The matching with regularization architecture is exactly the one we used in our DC module.
References
Ahmadi, A., Patras, I.: Unsupervised convolutional neural networks for motion estimation. In: Proceedings of IEEE International Conference on Image Processing, ICIP (2016)
Anderson, B.L., Nakayama, K.: Toward a general theory of stereopsis: binocular matching, occluding contours, and fusion. Psychol. Rev. 101(3), 414 (1994)
Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2018)
Chen, Z., Sun, X., Wang, L., Yu, Y., Huang, C.: A deep visual correspondence embedding model for stereo matching costs. In: Proceedings of IEEE International Conference on Computer Vision, ICCV (2015)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2012)
Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2017)
Heise, P., Klose, S., Jensen, B., Knoll, A.: PM-Huber: PatchMatch with Huber regularization for stereo matching. In: Proceedings of IEEE International Conference on Computer Vision, ICCV (2013)
Heitz, F., Bouthemy, P.: Multimodal estimation of discontinuous optical flow using Markov random fields. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 15(12), 1217–1232 (1993)
Hosni, A., Bleyer, M., Gelautz, M., Rhemann, C.: Local stereo matching using geodesic support weights. In: Proceedings of the IEEE International Conference on Image Processing, ICIP (2009)
Intille, S.S., Bobick, A.F.: Disparity-space images and large occlusion stereo. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 179–186. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0028349
Yu, J.J., Harley, A.W., Derpanis, K.G.: Back to basics: unsupervised learning of optical flow via brightness constancy and motion smoothness. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 3–10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_1
Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P.: End-to-end learning of geometry and context for deep stereo regression. In: Proceedings of the IEEE International Conference on Computer Vision, ICCV (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_3
Li, A., Yuan, Z.: SymmNet: a symmetric convolutional neural network for occlusion detection. In: Proceedings of the British Machine Vision Conference, BMVC (2018)
Liang, Z., et al.: Learning for disparity estimation through feature constancy. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2018)
Liu, M., Salzmann, M., He, X.: Discrete-continuous depth estimation from a single image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2014)
Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for stereo matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2016)
Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2016)
Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2015)
Nakayama, K., Shimojo, S.: Da vinci stereopsis: depth and subjective occluding contours from unpaired image points. Vis. Res. 30(11), 1811–1825 (1990)
Shaked, A., Wolf, L.: Improved stereo matching with constant highway networks and reflective confidence learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2017)
Silva, C., Santos-Victor, J.: Intrinsic images for dense stereo matching with occlusions. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 100–114. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45054-8_7
Sun, J., Li, Y., Kang, S.B.: Symmetric stereo matching for occlusion handling. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2005)
Tonioni, A., Poggi, M., Mattoccia, S., Di Stefano, L.: Unsupervised adaptation for deep stereo. In: The IEEE International Conference on Computer Vision, ICCV (2017)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. TIP 13(4), 600–612 (2004)
Yamaguchi, K., Hazan, T., McAllester, D., Urtasun, R.: Continuous Markov random fields for robust stereo estimation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 45–58. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_4
Yamaguchi, K., McAllester, D., Urtasun, R.: Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 756–771. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_49
Wang, Y., Yang, Y., Yang, Z., Zhao, L., Wang, P., Xu, W.: Occlusion aware unsupervised learning of optical flow. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2018)
Zbontar, J., LeCun, Y.: Computing the stereo matching cost with a convolutional neural network. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2015)
Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res. 17, 65:1–65:32 (2016)
Zhang, C., Li, Z., Cheng, Y., Cai, R., Chao, H., Rui, Y.: MeshStereo: a global stereo model with mesh alignment regularization for view interpolation. In: Proceedings of IEEE International Conference on Computer Vision, ICCV (2015)
Zhou, C., Zhang, H., Shen, X., Jia, J.: Unsupervised learning of stereo matching. In: Proceedings of the IEEE International Conference on Computer Vision, ICCV (2017)
Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, A., Yuan, Z. (2019). Occlusion Aware Stereo Matching via Cooperative Unsupervised Learning. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-20876-9_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20875-2
Online ISBN: 978-3-030-20876-9
eBook Packages: Computer ScienceComputer Science (R0)