[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Milestone Developments in Quantum Information and No-Go Theorems

  • Conference paper
  • First Online:
Distributed Computer and Communication Networks (DCCN 2020)

Abstract

In this article we present milestone developments in the theory and application of quantum information from historical perspectives. The domain of quantum information is very promising to develop quantum computer, quantum communication and varieties of other applications of quantum technologies. We also give the light on experimental manifestations of major theoretical developments. In addition, we present important no-go theorems frequently used in quantum information along with ideas of their respective mathematical proofs.

The publication has been prepared with the support of the “RUDN University Program 5–100”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shannon, C.E.: A Mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    Google Scholar 

  2. Bishnoi, B.: Quantum-computation and applications. arXiv:2006.02799 (2020)

  3. Landauer, R.: Information is physical. Phys. Today 44, 23–29 (1991)

    Article  Google Scholar 

  4. Landauer, R.: Information is a physical entity. Physica A 263, 63–67 (1999)

    Article  MathSciNet  Google Scholar 

  5. Oldofredi, A.: No-go theorems and the foundations of quantum physics. J. Gen. Philos. Sci. 49(3), 355–370 (2018). https://doi.org/10.1007/s10838-018-9404-5

    Article  MathSciNet  Google Scholar 

  6. Luo, M.-X., Li, H.-R., Lai, H., Wang, X.: Unified quantum no-go theorems and transforming of quantum pure states in a restricted set. Quantum Inf. Process. 16(12), 1–32 (2017). https://doi.org/10.1007/s11128-017-1754-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Toffoli, T.: Reversible computing, Tech. Memo MIT/LCS/TM-151, MIT Lab for Computer Science (1980)

    Google Scholar 

  9. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Transm. 9(3), 177–183 (1973)

    Google Scholar 

  10. Ingarden, R.S.: Quantum information theory. Rept. Math. Phys. 10, 43–72 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Manin, Y.I.: Vychislimoe i nevychislimoe. Sov. Radio, Moskva (1980). (in Russian)

    Google Scholar 

  12. Feynman, R.P.: Simulating physics with computers. Int. J. Theoret. Phys. 21(6), 467–478 (1982)

    Article  MathSciNet  Google Scholar 

  13. Park, L.: The concept of transition in quantum mechanics. Found. Phys. 1, 23–33 (1970). https://doi.org/10.1007/BF00708652

    Article  Google Scholar 

  14. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  MATH  Google Scholar 

  15. Dieks, D.: Communication by EPR devices. Phys. Lett. A. 92, 271–272 (1982)

    Article  Google Scholar 

  16. Benioff, P.: Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys. 29(3), 515–546 (1982). https://doi.org/10.1007/BF01342185

    Article  MathSciNet  MATH  Google Scholar 

  17. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  MATH  Google Scholar 

  18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. 10th Anniversary edition. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  19. Bennet, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, December pp. 175–179 (1984)

    Google Scholar 

  20. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Deutsch, D., Jozsa, R.: Rapid solutions of problems by quantum computation. Proc. R. Soc. London 439, 553–558 (1992)

    MathSciNet  MATH  Google Scholar 

  22. Shor, P.W.: Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shor., P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Google Scholar 

  24. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Anual ACM Symposium on the Theory of Computing, Philadelphia, Pensylvania, pp. 212–219 (1996)

    Google Scholar 

  27. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  MATH  Google Scholar 

  29. Gershenfeld, N.F., et al.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jones, J.A., Mosca, M.: Implementation of a quantum algorithm to solve Deutsch’s problem on a nuclear magnetic resonance quantum computer. J. Chem. Phys. 109, 1648 (1998)

    Article  Google Scholar 

  31. Chuang, I.L., Gershenfeld, N., Kubinec, M.: Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80, 3408–3411 (1998)

    Article  Google Scholar 

  32. Pati, A.K., Braunstein, S.L.: Impossibility of deleting an unknown quantum state. Nature 404, 164–165 (2000)

    Google Scholar 

  33. Vandersypen, L.M.K., et al.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    Article  Google Scholar 

  34. Knill, E., Laflamme, L., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  Google Scholar 

  35. Pittman, T.B., et al.: Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68, 032316 (2003)

    Article  Google Scholar 

  36. O’Brien, J.L., Branning, D., et al.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)

    Article  Google Scholar 

  37. Elliott, C.: The DARPA quantum network. arXiv:quant-ph/0412029v1 (2004)

  38. Brennen, G., Giacobino, E., Simon, C.: Focus on Quantum Memory. New J. Phys. 17, 050201 (2015)

    Article  Google Scholar 

  39. Kimble, H.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  Google Scholar 

  40. Chaneliere, T., et al.: Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005)

    Article  Google Scholar 

  41. Murao, M., et al.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)

    Article  MathSciNet  Google Scholar 

  42. Koike, S., et al.: Demonstration of quantum telecloning of optical coherent states. Phys. Rev. Lett. 96, 060504 (2006)

    Article  Google Scholar 

  43. Pirandola, S., et al.: Macroscopic entanglement by entanglement swapping. Phys. Rev. Lett. 97, 150403 (2006)

    Article  Google Scholar 

  44. Brennecke, F., et al.: Cavity QED with a Bose Einstein condensate. Nature 450, 268–271 (2007)

    Article  Google Scholar 

  45. Lanyon, B.P., et al.: Manipulating biphotonic qutrits. Phys. Rev. Lett. 100, 060504 (2008)

    Article  Google Scholar 

  46. Chen, J., et al.: Demonstration of a quantum controlled-NOT gate in the telecommunications band. Phys. Rev. Lett. 100, 133603 (2008)

    Article  Google Scholar 

  47. Mariantoni, M., et al.: Implementing the quantum von Neumann architecture with superconducting circuits. Science 334, 61–65 (2011)

    Article  Google Scholar 

  48. Pfaff, W., et al.: Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Dattani, N.S., Bryans, N.: Quantum factorization of 56153 with only 4 qubits. arXiv:1411.6758 (2014)

  50. Zhong, M., et al.: Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015)

    Article  Google Scholar 

  51. Gibney, E.: D-Wave upgrade: how scientists are using the world’s most controversial quantum computer. Nature 541, 447–448 (2017)

    Article  Google Scholar 

  52. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  Google Scholar 

  53. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 30, 598–601 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sharma, K.K., Awasthi, S.K., Pandey, S.N.: Entanglement sudden death and birth in qubit-qutrit systems under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 12, 3437–3447 (2013). https://doi.org/10.1007/s11128-013-0607-8

    Article  MathSciNet  MATH  Google Scholar 

  55. Sharma, K.K., Pandey, S.N.: Entanglement Dynamics in two parameter qubit-qutrit states under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 13, 2017–2038 (2014). https://doi.org/10.1007/s11128-014-0794-y

    Article  MATH  Google Scholar 

  56. Sharma, K.K., Pandey, S.N.: Influence of Dzyaloshinshkii-Moriya interaction on quantum correlations in two qubit Werner states and MEMS. Quantum Inf. Process. 14, 1361–1375 (2015). https://doi.org/10.1007/s11128-015-0928-x

    Article  MATH  Google Scholar 

  57. Sharma, K.K., Pandey, S.N.: Dzyaloshinshkii-Moriya interaction as an agent to free the bound entangled states. Quantum. Info. Process. 15, 1539 (2016)

    Article  MATH  Google Scholar 

  58. Sharma, K.K., Pandey, S.N.: Dynamics of entanglement in two parameter qubit-qutrit states with x-component of DM interaction. Commun. Theor. Phys. 65, 278–284 (2016)

    Article  Google Scholar 

  59. Sharma, K.K., Pandey, S.N.: Robustness of Greenberger-Horne-Zeilinger and W states against Dzyaloshinskii-Moriya interaction. Quantum Inf. Process 15, 4995–5009 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Sharma, K.K., Gerdt, V.P.: Entanglement sudden death and birth effects in two qubits maximally entangled mixed states under quantum channels. Int. J. Theoret. Phys. 59, 403–414 (2020). https://doi.org/10.1007/s10773-019-04332-z

    Article  MathSciNet  MATH  Google Scholar 

  61. Horodecki, R., et al.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Acin, A., et al.: The quantum technologies roadmap: a European community view. New J. Phys. 20, 080201 (2018)

    Article  Google Scholar 

  63. Pathak, A.: Elements of Quantum Computation and Quantum Communication. Taylor & Francis Group, Boca Raton (2013)

    Google Scholar 

  64. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  Google Scholar 

  65. Terhal, B.M.: Is entanglement monogamous? IBM J. Res. Dev. 48, 71–78 (2004)

    Article  Google Scholar 

  66. Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    Article  MathSciNet  Google Scholar 

  67. Osborne, T.J., Verstraete, F.: General Monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)

    Article  Google Scholar 

  68. Barnum, H., et al.: Noncommuting mixed states cannot be broadcast. Phys. Rev. 76, 2818–2821 (1996)

    Google Scholar 

  69. D’Ariano, G.M., Macchiavello, C., Perinotti, P.: Superbroadcasting of mixed states. Phys. Rev. Lett. 95, 060503 (2005)

    Google Scholar 

  70. Lindblad, G.: A general no-cloning theorem. Lett. Math. Phys. 47, 189–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  71. Barnum, H., et al.: Generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501 (2007)

    Article  Google Scholar 

  72. Kalev, A., Hen, I.: No-broadcasting theorem and its classical counterpart. Phys. Rev. Lett. 100, 210502 (2008)

    Article  Google Scholar 

  73. Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)

    Article  Google Scholar 

  74. Daffertshofer, A., Plastino, A.R., Plastino, A.: Classical no-cloning theorem. Phys. Rev. Lett. 88, 210601 (2002)

    Article  Google Scholar 

  75. Gruska, J., Imai, H.: Power, puzzles and properties of entanglement. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 25–68. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45132-3_3

    Chapter  MATH  Google Scholar 

  76. Popescu, S., Rohrlich, D.: Causality and nonlocality as axioms for quantum mechanics. In: Hunter, G., Jeffers, S., Vigier, J.P. (eds.) Causality and Locality in Modern Physics. Fundamental Theories of Physics (An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application), vol. 97, pp. 383–390. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0990-3_45

  77. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  78. Benenti, G., Casatti, G., Strini, G.: Principles of Quantum Computation and Information. Vol. I: Basic Concepts. World Scientific, Singapore (2004)

    Google Scholar 

  79. Braunstein, S.L., Pati, A.K.: Quantum information cannot be completely hidden in correlations: implications for black hole information paradox. Phys. Rev. Lett. 98, 080502 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  80. Pani, S.J., Pati, A.K.: Experimental test of the quantum no-hiding theorem. Phys. Rev. Lett. 106, 080401 (2011)

    Article  Google Scholar 

  81. Nielsen, M.A., Chuang, I.L.: Programmable quantum gate arrays. Phys. Rev. Lett. 79, 321–324 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  82. Kubicki, A.M., Palazuelos, C., Peréz-Garcia, D.: Resource quantification for the no-programing theorem. Phys. Rev. Lett. 122, 080505 (2019)

    Article  Google Scholar 

  83. Diamanti, E. et al.: Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025 (2016). https://doi.org/10.1038/npjqi.2016.25

  84. Bedington, R., Arrazola, J.M., Ling, A.: Progress in satellite quantum key distribution. npj Quantum Inf. 3, 30 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Gerdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, K.K., Gerdt, V.P., Gerdt, P.V. (2020). Milestone Developments in Quantum Information and No-Go Theorems. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds) Distributed Computer and Communication Networks. DCCN 2020. Lecture Notes in Computer Science(), vol 12563. Springer, Cham. https://doi.org/10.1007/978-3-030-66471-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66471-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66470-1

  • Online ISBN: 978-3-030-66471-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics