Abstract
Quantum entanglement is behind various puzzling/mysterious or paradoxical phenomena of quantum mechanics in general and of quantum information processing and communication (QIPC) in particular. Or, using less strong terms, quantum entanglement leads to highly nonintuitive or even counterintuitive effects. Some of them have been known for long time. New are being discovered almost daily. At the same time quantum entanglement is considered to be a very powerful resource for QIPC and, together with quantum superposition, quantum parallelism and quantum measurement, to be the main resource of the (provable) exponentially larger power of QIPC with respect to the classical information processing and communication.
It is increasingly realized that quantum entanglement is at the heart of quantum physics and as such it may be of very broad importance for modern science and future technologies. It has also been to a large extent quantum entanglement that has led in quantum mechanics to asking fundamentally new questions and has brought a chance to see in a more profound way various features of the quantum world (and this way it can contribute to a new understanding of the foundations of quantum mechanics). There is therefore a large need to understand, analyze and utilize this resource.
The aim of the paper is, on one side, to illustrate and analyze various puzzling phenomena that are due to the quantum entanglement and related nonlocality of quantum mechanics, as well as computational and, especially, communicational power of quantum entanglement. On the other side, the aim of the paper is to discuss main basic concepts, methods and results of the already very rich body of knowledge obtained recently at the attempts to understand, qualitatively and quantitatively, entanglement, laws and limitations of its distribution as well as its properties, structures and potentials for applications.
In order to demonstrate special power of quantum entanglement two puzzles “with science fiction overtones” are dealt with first. They look like exhibiting a telepathy.
Most of the paper has been written during the first author stay with the ERATO project. Support of the grants GAČR 201/01/0413, CEZ:J07/98:143300001 is also to be acknowledged.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
L. Accardi and M. Ohya. Teleportation of general quantum systems. Technical report, quant-ph/9912087, 1999.
S. Albeverio and S.-M. Fei. Teleportation of general finite dimensional quantum systems. Technical report, quant-ph/0012035, 2000.
J. S. Bell On the Einstein-Podolsky-Rosen paradox. Physics 1, pages 195–200, 1964. Reprinted in Quantum Theory and Measurement, (eds): J. A. Wheeler and W. H. Zurek, 403-408.
C. H. Bennett, D. DiVincenzo, J. Smolin, B. Terhal, and W. Wooters. Remote state preparation. Technical report, quant-ph/0006044, 2000.
C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V. Thapliyal. Exact and asymptotic measures of multipartite pure state entanglement. Technical report, quant-ph/9908073, 1999.
C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal. Entanglementassisted classical capacity of noisy quantum channels. Technical report, quant ph/9904023, 1999a.
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70:1895–1899, 1993.
C. H. Bennett, G. Brassard, S. Popescu, B. W. Schumacher, J. A. Smolin, and W. K. Wootters Purification of noisy entanglement and faithful teleportation via noisy channels. Physical Review Letters, 76(5):722–725, 1996.
C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Moric, E. M. Rains, P. W. Shor, and J. A. Smolin Quantifying non-locality without entanglement. Technical report, quant-ph/9804053, 1998.
C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin Capacities of quantum erasure channels. Technical report, quant-ph/9701015, 1997a.
C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters Mixed state entanglement and quantum error correction. Physical Review A, 54:3824–3851, 1996a. quant-ph/9604024.
D. Bohm. A suggested interpretation of the quantum theory in terms of “hidden” variables I and II. Physics Review, 85:166–193, 1952. also in “Quantum theory and measurements” (ed. J. A. Wheeler and W. H. Zurek), Princeton University Press, 1983.
S. Bose and D. Home. A generic source of entanglement showing complementarity between entanglemen and particle distinguishibility. Technical report, quant ph/0101093, 2000.
S. Bose and V. Vedral. Mixedeness and teleporattion. Technical report, quant ph/9912033, 1999.
S. Bose, V. Vedral, and P. L. Knight. A multiparticle generalization of entanglement swapping. Technical report, quant-ph/9708004, 1997.
J. Bouda and V. B. zek. Entanglement swapping between multi-qudit systems. Technical report, Tech. Report, Faculty of Informatics, Masaryk University, 2000.
D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger. Experimental quantum teleportation. Nature, 390(6660):575–579, December 1997.
G. Bowen. Classical information capacity of superdense coding. Technical report, quant-ph/0101117, 2001.
G. Brassard. Quantuqm communication complexity. Technical report, quant ph/ 0101005, 2001.
D. Bruß and A. Peres. Construction of quantum states with bound entanglement. Technical report, quant-ph/9911056, 1999.
H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and computation. In Proceedings of 30th ACM STOC, pages 63–68, 1998. quant ph/9802040.
R. Cleve, D. Gottesman, and H.-K. Lo. How to share a quantum secret. Technical report, quant-ph/9901025, 1999.
V. Coffman, J. Kundu, and W. K. Wootters. Distributed entanglement. Technical report, quant-ph/9907047, 1999.
D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal. Unextendible product bases, uncompletable product bases, and bound entanglement. Technical report, quant-ph/9908070, 1999.
D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and A. V. Thapliyal. Evidence for bound entangled states with negative partial transpose. Technical report, quant-ph/9910026, 1999.
D. P. DiVincenzo, C. A. Fuchs, H. Mabuchi, J. A. Smolin, A. Thapliyal, and A. Uhlmann. Entanglement of assistance. Technical report, quant-ph/9803033, 1998.
W. Dürr. Entanglement molecules. Technical report, quant-ph/0006105, 2000.
W. Dürr and J. Cirac. Multipartite entanglement and its experimental detection. Technical report, quant-ph/0011025, 2000.
A. Einstein, B. Podolsky, and N. Rosen. Can quantum mechanical description of physics reality be considered complete? Physical Review, 47:777–780, 1935.
A. K. Ekert Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67(6):661–663, 1991.
B. Enquist and W. Schmid, editors. Mathematics unlimited, 2001 and beyond, chapter Quantum computing challenges, pages 529–564. Springer, 2000.
V. N. Gorbachev and A. I. Trubilko. Quantum teleportation of EPR pair by three-particle entanglement. Technical report, quant-ph/9906110, 1999.
V. N. Gorbachev, A. I. Zhiliba, A. I. Trubilko, and E. S. Yakovleva. Teleportation of entangled states and dense coding using a multiparticle channel. Technical report, quant-ph/0011124, 2000.
D. Gottesman. Theory of quantum secret sharing. Technical report, quantph/9910067, 1999.
D. Gottesman and I. L. Chuang. Quantum teleportation is a universal computational primitive. Technical report, quant-ph/9908010, 1999.
D. M. Greenberger, M. A. Horne, and A. Zeilinger. Bell’s theorem and the conception of the universe, chapter Going beyond Bell’s theorem, pages 69-. Kluwer Academic, Dordrecht, 1989.
J. Gruska. Quantum computing. McGraw-Hill, 1999. See also additions and updatings of the book on http://www.mcgraw-hill.co.uk/gruska.
L. Hardy. Spooky action at a distance in quantum mechanics. Contemporary physics, 6(6):419–429, 1998.
L. Hardy. Disentangling non-locality and teleportation. Technical report, quantph/9906123, 1999.
M. Hillery, V. Bu.zek, and A. Berthiaume. Quantum secret sharing. Technical report, quant-ph/9806063, 1998.
S. Hill and W. K. Wootters Entanglement of a pair of quantum bits. Technical report, quant-ph/9703041, 1997.
T. Hiroshima. Optimal dense coding with mixed state entanglement. Technical report, quant-ph/0009048, 2000.
M. Horodecki, P. Horodecki, and R. Horodecki. Inseperable two spin 1/2 density matrices can be distilled to a singlet form. Physics Review Letters, 78:547–577, 1997.
M. Horodecki, P. Horodecki, and R. Horodecki. Separability of mixed states: necessary and sufficient conditions. Physics Letters A, 223:1–8, 1998. quantph/9605038.
M. Horodecki, P. Horodecki, and R. Horodecki. Limits for entanglement measures. Technical report, quant-ph/9908065, 1999.
M. Horodecki, P. Horordecki, and R. Horodecki. Quantum information-an introduction to basic theoretical concepts and experiments, chapter Mixed-state entanglement and quantum communication. Springer, 2001.
R. Horodecki, M. Horodecki, and P. Horodecki. Reversibility of local transformations of multipartite entanglement. Technical report, quant-ph/9912039, 1999.
R. Horodecki, M. Horodecki, and P. Horodecki. On balance of information in bipartite quantum information systems: entanglement-energy analogy. Technical report, quant-ph/0002021, 2000.
M. Horodecki, P. Horodecki, and R. Horodecki. Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Technical report, quantph/9801069, 1998a.
M. Horodecki, P. Horodecki, and R. Horodecki. Bound entanglement can be activated. Technical report, quant-ph/9806058, 1998b.
M. Horodecki and R. Horodecki. Are there basic laws of quantum information processing? Technical report, quant-ph/9705003, 1997.
J. G. Jensen and R. Schack. Quantum authentication and key distribution using catalysis. Technical report, quant-ph/00031104, 2000.
I. D. Jonathan and M. B. Plenio. Entanglement-assisted local manipulation of pure quantum states. Technical report, quant-ph/9905071, 1999. See also Phys. Rev. Lett., 83, 3566–3569, 1999.
R. Jozsa, D. S. A. J. P. Dowling, and C. P. Williams. Quantum clock synchronization based on shared prior entanglement. Technical report, quant-ph/0004105, 2000.
P. Kaye and M. Mosca. Quantum networks for concentrating entanglement. Technical report, quant-ph/0101009, 2001.
A. Kent. Entangled mixed states and local purification. Technical report, quantph/9805088, 1998.
A. Kent, N. Linden, and S. Massar. Optimal entanglement enhancement for mixed states. Technical report, quant-ph/9902022, 1999.
Y.-H. Kim, S. P. Kulik, and Y. Shih. Quantum teleportation with a complete Bell state measurement. Technical report, quant-ph/0010046, 2000.
M. Koashi, V. B. zek, and N. Imoto. Tight bounds for symmetric sharing of entanglement among qubits. Technical report, quant-ph/0007086, 2000.
B. Kraus and J. I. Cirac. Optimal creation of entanglement using a two-qubit gate. Technical report, quant-ph/0011050, 2000.
M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki. Optimization of entanglement witnesses. Technical report, quant-ph/0005014, 2000.
N. Linden and S. Popescu. Bound entanglement and teleportation. Technical report, quant-ph/9807069, 1998.
N. Linden, S. Popescu, B. Schumacher, and M. Westmoreland. Reversibility of local transformations of multiparticle entanglement. Technical report, quantph/9912039, 1999.
L. Marinatto and T. Weber. Which kind of two-particles states can be teleported through a three-particle quantum channel? Technical report, quant-ph/0004054, 2000.
M. Murao and V. Vedral. Remote information concentration using a bound entangled state. Technical report, quant-ph/0008078, 2000.
M. A. Nielsen. On the units of bipartite entanglement: is sixten ounces of entanglement always equal to one pound? Technical report, quant-ph/0011063, 2000.
M. A. Nielsen and J. Kempe. Separable states are more disordered globally than locally. Technical report, quant-ph/0011117, 2000.
M. Nielsen A partial order on the entangled states. Technical report, quantph/9811053, 1998.
K. M. O. Connors and W. K. Wooters. Entangled rings. Technical report, quantph/0009041, 2000.
A.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger. Experimental test of quantum non-loclaity in three photon Greenberg-Horne-Zeilinger entanglement. Nature, 403:515–519, 2000.
J. W. Pan, D. Bouwemester, H. Weinfurter, and A. Zeilinger. Experimental entanglement swapping: entangled photons that never interacted. Physical Review Letters, 80:3891–3894, 1998.
J.-W. Pan, C. Simon, Č. Brukner, and A. Zeilinger. Feasible entanglement purification for quantum communication. Technical report, Institut für Experimentalphysik, universityät Wien, 2000.
A. K. Pati. Quantum cobweb: remote shared-entangling of an unknown quantum state. Technical report, quant-ph/0101049, 2001.
I. C. Percival. Why Bell experiments. Technical report, quant-ph/0008097, 2000.
A. Peres. Separability criterion for density matrices. Physical Review Letters, 77:1413–1415, 1996a.
A. Peres. Delayed choice for entanglement swapping. Journal of Modern Optics, 47:139–143, 2000.
M. Plenio and V. Vedral. Bounds on relative entropy of entanglement for multiparty systems. Technical report, quant-ph/0010080, 2000.
M. B. Plenio and V. Vedral. Teleporatation, entanglement and thermodynamics in the quantum world. Technical report, quant-ph/9804075, 1998.
R. Rausschendorf and H. Briegel. Quantum computing via measurements only. Technical report, quant-ph/0010033, 2000.
R. Raz. Exponential separation of quantum and classical communication complexity. In Proceedings of 31st ACM STOC, pages 358–367, 1999.
O. Rudolp. A new class of entanglement measures. Technical report, quantph/0005011, 2000.
E. Schrödinger. Die gegenwartige situation in der quanenmechanik. Natürwissenschaften, 23:807–812, 823-828, 844-849, 1935.
P. Shor and J. S. an A. Thapliyal. Superactivation of bound entanglement. Technical report, quant-ph/0005117, 2000.
J. A. Smolin. A four-party unlockable bound-entangled state. Technical report, quant-ph/0001001, 2000.
H. P. Stapp. From quantum non-locality to mind-brain interactions. Technical report, quant-ph/0010029, 2000.
A. M. Steane and W. van Dam. Guess my number. Physics Today, 53(2):35–39, 2000.
B. M. Terhal. Detecting quantum entanglement. Technical report, quantph/ 0101032, 2001.
B. M. Terhal, D. P. DiVincenzo, and D. W. Leung. Hidding bits in Bell states. Technical report, quant-ph/0011042, 2000.
W. Tittel, T. Brendel, H. Zbinden, and N. Gisin. Quantum cryptography using entangled photons in energy-time Bell states. Physics Review Letters, 84:4737–4740, 2000.
W. Tittel, H. Zbinden, and N. Gisin. Quantum secret sharing using pseudo-GHZ states. Technical report, quant-ph/9912035, 1999.
W. Tittel, J. Brendel, H. Zbinden, and N. Gisin. Experimental demonstration of quantum correlation over more than 10km. Physical Review A, 57(5):3229–3232, 1998. Preprint quant-ph/9806043.
A. Uhlmann. Entropy and optimal decomposition of states relative to a maximal commutative algebra. Technical report, quant-ph/9704017, 1997.
L. Vaidman. Teleportation: dream or reality? Technical report, quantph/9810089, 1998.
W. van Dam, P. Høyer, and A. Tapp. Multiparty quantum communication complexity. Technical report, quant-ph/9710054, 1997.
V. Vedral and M. B. Plenio Entanglement measures and purification procedures. Technical report, quant-ph/9707035, 1997.
J. Walgate, A. J. Short, L. Hardy, and V. Vedral. Local distinguishability of multipartite orthogonal quantum states. Technical report, quant-ph/0007098, 2000.
A. M. Wang. Bounds on the generalized entanglement of formation for multiparity systems. Technical report, quant-ph/0011091, 2000.
A. M. Wang. Improved relative entropy of entanglement for multi-party systems. Technical report, quant-ph/0012029, 2000a.
R. F. Werner. All teleportation and dense coding schemes. Technical report, quant-ph/0003070, 2000.
W. K. Wootters. Entangled chains. Technical report, quant-ph/0001114, 2000.
M. Žukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert. “Event-ready-detectors”; Bell experiments via entanglement swapping. Physical Review Letters, 71:4287–4290, 1993.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gruska, J., Imai, H. (2001). Power, Puzzles and Properties of Entanglement. In: Margenstern, M., Rogozhin, Y. (eds) Machines, Computations, and Universality. MCU 2001. Lecture Notes in Computer Science, vol 2055. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45132-3_3
Download citation
DOI: https://doi.org/10.1007/3-540-45132-3_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42121-4
Online ISBN: 978-3-540-45132-7
eBook Packages: Springer Book Archive