[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Influence of Reordering Algorithms on the Convergence of a Preconditioned Restarted GMRES Method

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12249))

Included in the following conference series:

  • 1694 Accesses

Abstract

This paper concentrates on applying reordering algorithms as a preprocessing step of a restarted Generalized Minimal Residual (GMRES for short) solver preconditioned by three ILU-type preconditioners. This paper investigates the effect of 13 orderings on the convergence of the preconditioned GMRES solver restarted every 50 steps when applied to nine real large-scale nonsymmetric and not positive definite matrices. Specifically, this paper shows the most promising combination of preconditioners and reordering for each linear system used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gonzaga de Oliveira, S.L., Carvalho, C., Osthoff, C.: The effect of symmetric permutations on the convergence of are started GMRES solver with ILU-type preconditioners. In: 2019 Winter Simulation Conference (WSC), National Harbor, MA,USA, pp. 3219–3230. IEEE (2019)

    Google Scholar 

  2. Benzi, M., Haws, J.C., Tuma, M.: Preconditioning highly indefinite and nonsymmetric matrices. SIAM J. Sci. Comput. 22(4), 1333–1353 (2000)

    Article  MathSciNet  Google Scholar 

  3. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  4. Benzi, M., Szyld, D.B., Van Duin, A.: Orderings for incomplete factorization preconditioning of nonsymmetric problems. SIAM J. Sci. Comput. 20(5), 1652–1670 (1999)

    Article  MathSciNet  Google Scholar 

  5. Camata, J.J., Rossa, A.L., Valli, A.M.P., Catabriga, L., Carey, G.F., Coutinho, A.L.G.A.: Reordering and incomplete preconditioning in serial and parallel adaptive mesh refinement and coarsening flow solutions. Int. J. Numer. Meth. Fl. 69(4), 802–823 (2012)

    Article  MathSciNet  Google Scholar 

  6. Gonzaga de Oliveira, S.L., Bernardes, J.A.B., Chagas, G.O.: An evaluation of reordering algorithms to reduce the computational cost of the incomplete Cholesky-conjugate gradient method. Comput. Appl. Math. 37(3), 2965–3004 (2017). https://doi.org/10.1007/s40314-017-0490-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Saad, Y.: ILUT: a dual threshold incomplete LU factorization. Numer. Linear Algebra Appl. 1(4), 387–402 (1994)

    Article  MathSciNet  Google Scholar 

  8. Li, N., Saad, Y., Chow, E.: Crout versions of ILU for general sparse matrices. SIAM J. Sci. Comput. 25(2), 716–728 (2003)

    Article  MathSciNet  Google Scholar 

  9. Saad, Y., Suchomel, B.: ARMS: an algebraic recursive multilevel solver for general sparse linear systems. Numer. Linear Algebra Appl. 9(5), 359–378 (2002)

    Article  MathSciNet  Google Scholar 

  10. Saad, Y.: ITSOL vol 2.0: Iterative solvers package (2016)

    Google Scholar 

  11. Gonzaga de Oliveira, S.L., Bernardes, J.A.B., Chagas, G.O.: An evaluation of low-cost heuristics for matrix bandwidth and profile reductions. Comput. Appl. Math. 37(2), 1412–1471 (2016). https://doi.org/10.1007/s40314-016-0394-9

    Article  MathSciNet  MATH  Google Scholar 

  12. George, A., Liu, J.W.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  13. Gonzaga de Oliveira, S.L., Abreu, A.A.A.M., Robaina, D.T., Kischnhevsky, M.: An evaluation of four reordering algorithms to reduce the computational cost of the Jacobi-preconditioned conjugate gradient method using high-precision arithmetic. Int. J. Bus. Intell. Data Min. 12(2), 190–209 (2017)

    Google Scholar 

  14. Gonzaga de Oliveira, S.L., Abreu, A.A.A.M.: An evaluation of pseudoperipheral vertex finders for the reverse Cuthill-Mckee method for bandwidth and profile reductions of symmetric matrices. In: Proceedings of the 37th International Conference of the Chilean Computer Science Society (SCCC), Santiago, Chile, pp. 1–9. IEEE (2018). https://doi.org/10.1109/SCCC.2018.8705263

  15. Koohestani, B., Poli, R.: A hyper-heuristic approach to evolving algorithms for bandwidth reduction based on genetic programming. In: Bramer, M., Petridis, M., Nolle, L. (eds.) Research and Development in Intelligent Systems XXVIII, SGAI 2011, pp. 93–106. Springer, London (2011). https://doi.org/10.1007/978-1-4471-2318-7_7

    Chapter  Google Scholar 

  16. Medeiros, S.R.P., Pimenta, P.M., Goldenberg, P.: Algorithm for profile and wavefront reduction of sparse matrices with a symmetric structure. Eng. Comput. 10(3), 257–266 (1993)

    Article  Google Scholar 

  17. Sloan, S.W.: A Fortran program for profile and wavefront reduction. Int. J. Numer. Meth. Eng. 28(11), 2651–2679 (1989)

    Article  Google Scholar 

  18. Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront reduction. BIT Numer. Math. 37(3), 559–590 (1997)

    Article  MathSciNet  Google Scholar 

  19. Reid, J.K., Scott, J.A.: Ordering symmetric sparse matrices for small profile and wavefront. Int. J. Numer. Meth. Eng. 45(12), 1737–1755 (1999)

    Article  Google Scholar 

  20. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings the 1969 24th International Conference, pp. 157–172. ACM (1969)

    Google Scholar 

  21. George, A.: Computer implementation of the finite element method. PhD thesis, Stanford University, Stanford (1971)

    Google Scholar 

  22. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

  23. George, A., Liu, J.W.H.: An implementation of a pseudoperipheral node finder. ACM Trans. Math. Softw. 5(3), 284–295 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Gonzaga de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Oliveira, S.L.G., Carvalho, C., Osthoff, C. (2020). The Influence of Reordering Algorithms on the Convergence of a Preconditioned Restarted GMRES Method. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics