[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving the Performance of the GMRES Method Using Mixed-Precision Techniques

  • Conference paper
  • First Online:
Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI (SMC 2020)

Abstract

The GMRES method is used to solve sparse, non-symmetric systems of linear equations arising from many scientific applications. The solver performance within a single node is memory bound, due to the low arithmetic intensity of its computational kernels. To reduce the amount of data movement, and thus, to improve performance, we investigated the effect of using a mix of single and double precision while retaining double-precision accuracy. Previous efforts have explored reduced precision in the preconditioner, but the use of reduced precision in the solver itself has received limited attention. We found that GMRES only needs double precision in computing the residual and updating the approximate solution to achieve double-precision accuracy, although it must restart after each improvement of single-precision accuracy. This finding holds for the tested orthogonalization schemes: Modified Gram-Schmidt (MGS) and Classical Gram-Schmidt with Re-orthogonalization (CGSR). Furthermore, our mixed-precision GMRES, when restarted at least once, performed 19% and 24% faster on average than double-precision GMRES for MGS and CGSR, respectively. Our implementation uses generic programming techniques to ease the burden of coding implementations for different data types. Our use of the Kokkos library allowed us to exploit parallelism and optimize data management. Additionally, KokkosKernels was used when producing performance results. In conclusion, using a mix of single and double precision in GMRES can improve performance while retaining double-precision accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anzt, H., Heuveline, V., Rocker, B.: Mixed precision iterative refinement methods for linear systems: convergence analysis based on Krylov subspace methods. In: Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7134, pp. 237–247. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28145-7_24

    Chapter  Google Scholar 

  2. Arnoldi, W.E.: The principle of minimized iteration in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17–29 (1951). https://doi.org/10.1090/qam/42792

    Article  MathSciNet  MATH  Google Scholar 

  3. Baboulin, M., et al.: Accelerating scientific computations with mixed precision algorithms. CoRR abs/0808.2794 (2008). https://doi.org/10.1016/j.cpc.2008.11.005

  4. Baker, A.H.: On improving the performance of the linear solver restarted GMRES, Ph.D. thesis. University of Colorado (2003)

    Google Scholar 

  5. Baker, A.H., Jessup, E.R., Manteuffel, T.: A technique for accelerating the convergence of restarted GMRES. SIAM J. Matrix Anal. Appl. 26(4), 962–984 (2005). https://doi.org/10.1137/S0895479803422014

    Article  MathSciNet  MATH  Google Scholar 

  6. Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P., Kurzak, J.: Mixed precision iterative refinement techniques for the solution of dense linear systems. Int. J. High Perform. Comput. Appl. 21(4), 457–466 (2007). https://doi.org/10.1177/1094342007084026

    Article  MATH  Google Scholar 

  7. Carson, E., Higham, N.J.: A new analysis of iterative refinement and its application to accurate solution of ill-conditioned sparse linear systems. SIAM J. Sci. Comput. 39(6), A2834–A2856 (2017). https://doi.org/10.1137/17M1122918

    Article  MathSciNet  MATH  Google Scholar 

  8. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 25 (2011). https://doi.org/10.1145/2049662.2049663

    Article  MathSciNet  MATH  Google Scholar 

  9. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore performance portability through polymorphic memory access patterns. J. Parallel Distr. Comput. 74(12), 3202–3216 (2014). https://doi.org/10.1016/j.jpdc.2014.07.003

    Article  Google Scholar 

  10. Giraud, L., Haidar, A., Watson, L.T.: Mixed-precision preconditioners in parallel domain decomposition solvers. In: Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds.) Domain Decomposition Methods in Science and Engineering XVII. LNCSE, vol. 60. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-75199-1_44

    Chapter  Google Scholar 

  11. Giraud, L., Langou, J., Rozloznik, M.: The loss of orthogonality in the Gram-Schmidt orthogonalization process. Comput. Math. Appl. 50(7), 1069–1075 (2005). https://doi.org/10.1016/j.camwa.2005.08.009

    Article  MathSciNet  MATH  Google Scholar 

  12. Gratton, S., Simon, E., Titley-Peloquin, D., Toint, P.: Exploiting variable precision in GMRES. SIAM J. Sci. Comput. (2020, to appear)

    Google Scholar 

  13. Greenbaum, A., Rozložník, M., Strakoš, Z.: Numerical behaviour of the modified Gram-Schmidt GMRES implementation. Bit. Numer. Math. 37(3), 706–719 (1997). https://doi.org/10.1007/BF02510248

    Article  MathSciNet  MATH  Google Scholar 

  14. Grützmacher, T., Anzt, H.: A modular precision format for decoupling arithmetic format and storage format. In: Revised Selected Papers, Turin, Italy, pp. 434–443 (2018). https://doi.org/10.1007/978-3-030-10549-5_34

  15. Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: posit arithmetic. Supercomput. Front. Innov. 4(2), 71–86 (2017). https://doi.org/10.14529/jsfi170206

    Article  Google Scholar 

  16. Liang, X., et al.: Error-controlled lossy compression optimized for high compression ratios of scientific datasets. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 438–447. IEEE (2018). https://doi.org/10.1109/BigData.2018.8622520

  17. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Comput. Graph. 20(12), 2674–2683 (2014). https://doi.org/10.1109/TVCG.2014.2346458

    Article  Google Scholar 

  18. Paige, C.C.: A useful form of unitary matrix obtained from any sequence of unit 2-norm n-vectors. SIAM J. Matrix Anal. Appl. 31(2), 565–583 (2009). https://doi.org/10.1137/080725167

    Article  MathSciNet  MATH  Google Scholar 

  19. Paige, C.C., Rozlozník, M., Strakos, Z.: Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl. 28(1), 264–284 (2006). https://doi.org/10.1137/050630416

    Article  MathSciNet  MATH  Google Scholar 

  20. Paige, C.C., Strakos, Z.: Residual and backward error bounds in minimum residual Krylov subspace methods. SIAM J. Sci. Comput. 23(6), 1898–1923 (2001). https://doi.org/10.1137/S1064827500381239

    Article  MathSciNet  MATH  Google Scholar 

  21. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM Press, Philadelphia (2003)

    Book  Google Scholar 

  22. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986). https://doi.org/10.1137/0907058

    Article  MathSciNet  MATH  Google Scholar 

  23. Van der Vorst, H.A., Vuik, C.: The superlinear convergence behaviour of GMRES. J. Comput. Appl. Math. 48(3), 327–341 (1993). https://doi.org/10.1016/0377-0427(93)90028-A

    Article  MathSciNet  MATH  Google Scholar 

  24. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Prentice-Hall, Princeton (1963)

    MATH  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the University of Tennessee grant MSE E01-1315-038 as Interdisciplinary Seed funding and in part by UT Battelle subaward 4000123266. This material is also based upon work supported by the National Science Foundation under Grant No. 2004541.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Lindquist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lindquist, N., Luszczek, P., Dongarra, J. (2020). Improving the Performance of the GMRES Method Using Mixed-Precision Techniques. In: Nichols, J., Verastegui, B., Maccabe, A.‘., Hernandez, O., Parete-Koon, S., Ahearn, T. (eds) Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI. SMC 2020. Communications in Computer and Information Science, vol 1315. Springer, Cham. https://doi.org/10.1007/978-3-030-63393-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63393-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63392-9

  • Online ISBN: 978-3-030-63393-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics