Abstract
Division property is a generalized integral property proposed by Todo in Eurocrypt 2015. Utilizing automated tools such as SAT and MILP, the complexity to search for integral distinguisher by division property was greatly reduced. Based on division property and automated tools, Derbez et al. obtained a 10-round integral distinguisher of RECTANGLE by considering the linear transformation of the input and output state bits of the cipher, which is one round longer than known integral distinguishers. In this paper, we further consider improved integral attack on block ciphers with Generalized Feistel Structure (GFS cipher) by considering the linear transformation of the S-boxes. Taking the 16-branch GFS cipher with 4-bit S-boxes as an example, using this improved method, we can increase the round of integral distinguishers by one round for many S-boxes. The result implies that ability to resist this improved integral attack should also be considered when designing corresponding GFS ciphers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12
Zhang, H., Wu, W.: Structural evaluation for generalized Feistel structures and applications to LBlock and TWINE. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 218–237. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26617-6_12
Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_20
Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_18
Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_24
Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24
Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_5
Eskandari, Z., Kidmose, A.B., Kölbl, S., Tiessen, T.: Finding integral distinguishers with ease. In: Cid, C., Jacobson, M.J. (eds.) SAC 2018. LNCS, vol. 11349, pp. 115–138. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-10970-7_6
Derbez, P., Fouque, P.-A., Lambin, B.: Linearly equivalent S-boxes and the Division Property. Cryptology ePrint Archive, 2019/097 (2019)
Nyberg, K.: Generalized Feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034838
Suzaki, T., Minematsu, K.: Improving the generalized Feistel. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_2
Cook, S.A.: The complexity of theorem-proving procedures. In: STOC 1971, pp. 151–158. ACM (1971)
Biham, E., Anderson, R., Knudsen, L.: Serpent: a new block cipher proposal. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69710-1_15
Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_17
Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_21
Acknowledgements
We thank the anonymous reviewers for their careful reading of our paper and helpful comments. This research was supported by the National Natural Science Foundation of China (Nos. U1536101, 61521003) and the National cryptography Development Fund of China (Nos. MMJJ20180204, MMJJ20170103).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, Z., Xu, H., Lai, X. (2020). Improved Integral Attack on Generalized Feistel Cipher. In: Liu, Z., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2019. Lecture Notes in Computer Science(), vol 12020. Springer, Cham. https://doi.org/10.1007/978-3-030-42921-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-42921-8_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-42920-1
Online ISBN: 978-3-030-42921-8
eBook Packages: Computer ScienceComputer Science (R0)