Abstract
A simple network of small s-boxes can be proven secure against differential and linear cryptanalysis. Upperbounds of the differential probabilities and the linear correlations are derived for a generalized Feistel network having 1, 2, 3 or 4 s-boxes in parallel per round. It is conjectured that the results hold in general.
Preview
Unable to display preview. Download preview PDF.
References
K. Aoki, K. Ohta, Strict evaluation of the maximum average of differential probability and the maximum average of linear probability, preprint, February 1996.
K. Nyberg, Linear approximation of block ciphers, in Advances in Cryptology — EUROCRYPT '94 (Ed. A. De Santis), LNCS 950, Springer-Verlag, 1995, 439–444.
K. Nyberg, L. Knudsen, Provable security against a differential attack, J. Crypt. 8, Number 1, 1995, 27–38.
M. Matsui, New structure of block ciphers with provable security against differential and linear cryptanalysis, in Fast Software Encryption (Ed. D. Gollmann), LNCS 1039, Springer-Verlag, 1996, 205–218.
B. Schneier, J. Kelsey, Unbalanced Feistel networks and block cipher design, in Fast Software Encryption (Ed. D. Gollmann), LNCS 1039, Springer-Verlag, 1996, 121–144.
Y. Zheng, T. Matsumoto and H. Imai, On the construction of block ciphers provably secure and not relying on any unproven hypotheses, in Advances in Cryptology — CRYPTO'89, LNCS 435, Springer-Verlag, 1990, 461–480.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag
About this paper
Cite this paper
Nyberg, K. (1996). Generalized Feistel networks. In: Kim, K., Matsumoto, T. (eds) Advances in Cryptology — ASIACRYPT '96. ASIACRYPT 1996. Lecture Notes in Computer Science, vol 1163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034838
Download citation
DOI: https://doi.org/10.1007/BFb0034838
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61872-0
Online ISBN: 978-3-540-70707-3
eBook Packages: Springer Book Archive