Abstract
Recent research has introduced ideas from concept drift into process mining to enable the analysis of changes in business processes over time. This stream of research, however, has not yet addressed the challenges of drift categorization, drilling-down, and quantification. In this paper, we propose a novel technique for managing process drifts, called Visual Drift Detection (VDD), which fulfills these requirements. The technique starts by clustering declarative process constraints discovered from recorded logs of executed business processes based on their similarity and then applies change point detection on the identified clusters to detect drifts. VDD complements these features with detailed visualizations and explanations of drifts. Our evaluation, both on synthetic and real-world logs, demonstrates all the aforementioned capabilities of the technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54 (preprocessed as in [18]).
- 5.
- 6.
- 7.
- 8.
- 9.
References
van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: balancing between flexibility and support. CS - R&D 23(2), 99–113 (2009)
Abanda, A., Mori, U., Lozano, J.A.: A review on distance based time series classification. DMKD 33(2), 378–412 (2019)
Aghabozorgi, S., Seyed Shirkhorshidi, A., Ying Wah, T.: Time-series clustering - a decade review. IS 53(C), 16–38 (2015)
Bauer, M., Senderovich, A., Gal, A., Grunske, L., Weidlich, M.: How much event data is enough? A statistical framework for process discovery. In: CAISE, pp. 239–256 (2018)
Truonga, C., Oudre, L., Vayatis, N.: Selective review of offline change point detection methods (2019). arxiv:1801.00718
Denisov, V., Belkina, E., Fahland, D.: BPIC 2018: Mining Concept Drift in Performance Spectra of Processes (2018)
Di Ciccio, C., Maggi, F.M., Mendling, J.: Efficient discovery of target-branched declare constraints. Inf. Syst. 56, 258–283 (2016)
Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redundancies in declarative process models. IS 64, 425–446 (2017)
Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. ACM TMIS 5(4), 24:1–24:37 (2015)
Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)
Hompes, B., Buijs, J.C.A.M., van der Aalst, W.M.P., Dixit, P., Buurman, H.: Detecting change in processes using comparative trace clustering. SIMPDA 2015, 95–108 (2015)
Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)
Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Detecting sudden and gradual drifts in business processes from execution traces. IEEE TKDE 29(10), 2140–2154 (2017)
Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: CIDM, pp. 192–199. IEEE (2011)
Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-perspective checking of process conformance. Computing 98(4), 407–437 (2016)
Ostovar, A., Leemans, S.J., La Rosa, M.: Robust drift characterization from event streams of business processes (2018). https://eprints.qut.edu.au/121158/
Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.: Detecting drift from event streams of unpredictable business processes. In: ER, pp. 330–346 (2016)
Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., Rupprecht, L.: Process forecasting: towards proactive business process management. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 496–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_29
Polyvyanyy, A., Armas-Cervantes, A., Dumas, M., García-Bañuelos, L.: On the expressive power of behavioral profiles. Formal Asp. Comput. 28(4), 597–613 (2016)
Polyvyanyy, A., Weidlich, M., Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: The 4C spectrum of fundamental behavioral relations for concurrent systems. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 210–232. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_12
Seeliger, A., Nolle, T., Mühlhäuser, M.: Detecting concept drift in processes using graph metrics on process graphs. In: S-BPM, p. 6 (2017)
Tsymbal, A.: The problem of concept drift: definitions and related work. Comput. Sci. Depart. Trinity College Dublin 106(2), 58 (2004)
van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. TKDE 16(9), 1128–1142 (2004)
Ware, C.: Information visualization: perception for design. Elsevier, Amsterdam (2012)
Zheng, C., Wen, L., Wang, J.: Detecting process concept drifts from event logs. In: OTM CoopIS, pp. 524–542 (2017)
Acknowledgements
This work is partially funded by the EU H2020 program under MSCA-RISE agreement 645751 (RISE_BPM). Artem Polyvyanyy was partly supported by the Australian Research Council Discovery Project DP180102839.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A. (2019). Comprehensive Process Drift Detection with Visual Analytics. In: Laender, A., Pernici, B., Lim, EP., de Oliveira, J. (eds) Conceptual Modeling. ER 2019. Lecture Notes in Computer Science(), vol 11788. Springer, Cham. https://doi.org/10.1007/978-3-030-33223-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-33223-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33222-8
Online ISBN: 978-3-030-33223-5
eBook Packages: Computer ScienceComputer Science (R0)