[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comprehensive Process Drift Detection with Visual Analytics

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2019)

Abstract

Recent research has introduced ideas from concept drift into process mining to enable the analysis of changes in business processes over time. This stream of research, however, has not yet addressed the challenges of drift categorization, drilling-down, and quantification. In this paper, we propose a novel technique for managing process drifts, called Visual Drift Detection (VDD), which fulfills these requirements. The technique starts by clustering declarative process constraints discovered from recorded logs of executed business processes based on their similarity and then applies change point detection on the identified clusters to detect drifts. VDD complements these features with detailed visualizations and explanations of drifts. Our evaluation, both on synthetic and real-world logs, demonstrates all the aforementioned capabilities of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://doi.org/10.1007/s00607-015-0441-1.

  2. 2.

    https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb.

  3. 3.

    https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07.

  4. 4.

    https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54 (preprocessed as in [18]).

  5. 5.

    https://github.com/cdc08x/MINERful.

  6. 6.

    https://github.com/deepcharles/ruptures.

  7. 7.

    https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html.

  8. 8.

    https://github.com/yesanton/Process-Drift-Visualization-With-Declare.

  9. 9.

    http://apromore.org/platform/tools.

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: balancing between flexibility and support. CS - R&D 23(2), 99–113 (2009)

    Google Scholar 

  3. Abanda, A., Mori, U., Lozano, J.A.: A review on distance based time series classification. DMKD 33(2), 378–412 (2019)

    MathSciNet  Google Scholar 

  4. Aghabozorgi, S., Seyed Shirkhorshidi, A., Ying Wah, T.: Time-series clustering - a decade review. IS 53(C), 16–38 (2015)

    Google Scholar 

  5. Bauer, M., Senderovich, A., Gal, A., Grunske, L., Weidlich, M.: How much event data is enough? A statistical framework for process discovery. In: CAISE, pp. 239–256 (2018)

    Google Scholar 

  6. Truonga, C., Oudre, L., Vayatis, N.: Selective review of offline change point detection methods (2019). arxiv:1801.00718

  7. Denisov, V., Belkina, E., Fahland, D.: BPIC 2018: Mining Concept Drift in Performance Spectra of Processes (2018)

    Google Scholar 

  8. Di Ciccio, C., Maggi, F.M., Mendling, J.: Efficient discovery of target-branched declare constraints. Inf. Syst. 56, 258–283 (2016)

    Article  Google Scholar 

  9. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redundancies in declarative process models. IS 64, 425–446 (2017)

    Google Scholar 

  10. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. ACM TMIS 5(4), 24:1–24:37 (2015)

    Google Scholar 

  11. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

    Article  Google Scholar 

  12. Hompes, B., Buijs, J.C.A.M., van der Aalst, W.M.P., Dixit, P., Buurman, H.: Detecting change in processes using comparative trace clustering. SIMPDA 2015, 95–108 (2015)

    Google Scholar 

  13. Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)

    Article  MathSciNet  Google Scholar 

  14. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Detecting sudden and gradual drifts in business processes from execution traces. IEEE TKDE 29(10), 2140–2154 (2017)

    Google Scholar 

  15. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: CIDM, pp. 192–199. IEEE (2011)

    Google Scholar 

  16. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-perspective checking of process conformance. Computing 98(4), 407–437 (2016)

    Article  MathSciNet  Google Scholar 

  17. Ostovar, A., Leemans, S.J., La Rosa, M.: Robust drift characterization from event streams of business processes (2018). https://eprints.qut.edu.au/121158/

  18. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.: Detecting drift from event streams of unpredictable business processes. In: ER, pp. 330–346 (2016)

    Google Scholar 

  19. Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., Rupprecht, L.: Process forecasting: towards proactive business process management. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 496–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_29

    Chapter  Google Scholar 

  20. Polyvyanyy, A., Armas-Cervantes, A., Dumas, M., García-Bañuelos, L.: On the expressive power of behavioral profiles. Formal Asp. Comput. 28(4), 597–613 (2016)

    Article  MathSciNet  Google Scholar 

  21. Polyvyanyy, A., Weidlich, M., Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: The 4C spectrum of fundamental behavioral relations for concurrent systems. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 210–232. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_12

    Chapter  MATH  Google Scholar 

  22. Seeliger, A., Nolle, T., Mühlhäuser, M.: Detecting concept drift in processes using graph metrics on process graphs. In: S-BPM, p. 6 (2017)

    Google Scholar 

  23. Tsymbal, A.: The problem of concept drift: definitions and related work. Comput. Sci. Depart. Trinity College Dublin 106(2), 58 (2004)

    Google Scholar 

  24. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. TKDE 16(9), 1128–1142 (2004)

    Google Scholar 

  25. Ware, C.: Information visualization: perception for design. Elsevier, Amsterdam (2012)

    Google Scholar 

  26. Zheng, C., Wen, L., Wang, J.: Detecting process concept drifts from event logs. In: OTM CoopIS, pp. 524–542 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is partially funded by the EU H2020 program under MSCA-RISE agreement 645751 (RISE_BPM). Artem Polyvyanyy was partly supported by the Australian Research Council Discovery Project DP180102839.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Yeshchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A. (2019). Comprehensive Process Drift Detection with Visual Analytics. In: Laender, A., Pernici, B., Lim, EP., de Oliveira, J. (eds) Conceptual Modeling. ER 2019. Lecture Notes in Computer Science(), vol 11788. Springer, Cham. https://doi.org/10.1007/978-3-030-33223-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33223-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33222-8

  • Online ISBN: 978-3-030-33223-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics