Abstract
In the setting of a simple process language featuring non-deterministic choice and a parallel operator on the one hand and probabilistic choice on the other hand, we propose an axiomatization capturing strong distribution bisimulation. Contrary to other process equivalences for probabilistic process languages, in this paper distributions rather than states are the leading ingredients for building the semantics and the accompanying equational theory, for which we establish soundness and completeness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andova, S., Baeten, J.C.M., Willemse, T.A.C.: A complete axiomatisation of branching bisimulation for probabilistic systems with an application in protocol verification. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 327–342. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949_22
Andova, S., Willemse, T.A.C.: Branching bisimulation for probabilistic systems: characteristics and decidability. Theor. Comput. Sci. 356, 325–355 (2006)
Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of Communicating Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50. CUP, Cambridge (2010)
Baeten, J.C.M., Bergstra, J.A., Smolka, S.A.: Axiomatizing probabilistic processes: ACP with generative probabilities. Inf. Comput. 121(2), 234–255 (1995)
Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. J. Comput. Syst. Sci. 60, 187–231 (2000)
Bandini, E., Segala, R.: Axiomatizations for probabilistic bisimulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–381. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_31
ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of model checkers. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 312–328. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15545-6_20
Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf. Control 60(1–3), 109–137 (1984)
Bernardo, M., Gorrieri, R.: Extended Markovian process algebra. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61604-7_63
Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_2
Crafa, S., Ranzato, F.: Logical characterizations of behavioral relations on transition systems of probability distributions. ACM Trans. Comput. Logic 16(1), 2:1–2:24 (2014)
Deng, Y., Hennessy, M.: On the semantics of Markov automata. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 307–318. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_24
Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222, 139–168 (2013)
Deng, Y., Palamidessi, C.: Axiomatizations for probabilistic finite-state behaviors. Theor. Comput. Sci. 373, 92–114 (2007)
Deng, Y., Palamidessi, C., Pang, J.: Compositional reasoning for probabilistic finite-state behaviors. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 309–337. Springer, Heidelberg (2005). https://doi.org/10.1007/11601548_17
Eisentraut, C., Hermanns, H., Krämer, J., Turrini, A., Zhang, L.: Deciding bisimilarities on distributions. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 72–88. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1_6
Fischer, N., van Glabbeek, R.: Axiomatising infinitary probabilistic weak bisimilarity of finite-state behaviours. J. Log. Algebr. Methods Program. 102, 64–102 (2019)
Giacalone, A., Jou, C.-C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Broy, M. (ed.) Proceedings of IFIP WG 2.2 & 2.3 Working Conference on Programming Concepts and Methods, pp. 443–458 (1990)
Gnesi, S., ter Beek, M.H.: From the archives of the formal methods and tools lab. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed Programming. LNCS, vol. 11665, pp. 219–235. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21485-2_13
Gnesi, S., Larosa, S.: A sound and complete axiom system for the logic ACTL. In: De Santis, A. (ed.) Proceedings of ICTCS 1995, Ravello, 9–11 November 1995, pp. 291–306 (1995)
Groote, J.F., Rivera Verduzco, H.J., de Vink, E.P.: An efficient algorithm to determine probabilistic bisimulation. Algorithms 11(9), 131–1-22 (2018)
Groote, J.F., de Vink, E.P.: A complete axiomatization of branching bisimulation for a simple process language with probabilistic choice, Submitted
Groote, J.F., de Vink, E.P.: Problem solving using process algebra considered insightful. In: Katoen, J.-P., Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 48–63. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9_3
Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Proceedings of RTSS 1990, pp. 278–287. IEEE (1990)
Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Aspects Comput. 24, 749–768 (2012)
Hillston, J.: A compositional approach to performance modelling. Ph.D thesis, University of Edinburgh (1994)
Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94, 1–28 (1991)
Latella, D., Massink, M., de Vink, E.P.: Bisimulation of labelled state-to-function transition systems coalgebraically. Log. Methods Comput. Sci. 11(4) (2015). https://doi.org/10.2168/LMCS-11(4:16)2015, https://lmcs.episciences.org/1617
Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)
Moller, F.: The importance of the left merge operator in process algebras. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 752–764. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032072
Parma, A., Segala, R.: Logical characterizations of bisimulations for discrete probabilistic systems. In: Seidl, H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 287–301. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71389-0_21
Segala, R.: Modeling and Verification of Randomzied Distributed Real-Time Systems. Ph.D thesis, MIT (1995). Technical report MIT/LCS/TR-676
Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1_35
Stark, E.W., Smolka, S.A.: A complete axiom system for finite-state probabilistic processes. In: Plotkin, G.D., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction, Essays in Honour of Robin Milner, pp. 571–596. The MIT Press (2000)
Valmari, A.: Simple bisimilarity minimization in O(mlogn) time. Fundamenta Informaticae 105(3), 319–339 (2010)
Acknowledgement
JFG acknowledges the mutual inspiration of the development teams of mCRL2 and KandISTI. A nice example is the inclusion of the LTS minimization algorithm as provided in the mCRL2 toolset which has been incorporated in the KandISTI family members UMC and FMC. Also the attention for model checking of variability and software product lines with the mCRL2 toolset is such an example. EV acknowledges the warm hospitality of Stefania Gnesi and her research group at the CNR in Pisa at various occasions and the many pasti accoglienti shared together.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Groote, J.F., de Vink, E.P. (2019). An Axiomatization of Strong Distribution Bisimulation for a Language with a Parallel Operator and Probabilistic Choice. In: ter Beek, M., Fantechi, A., Semini, L. (eds) From Software Engineering to Formal Methods and Tools, and Back. Lecture Notes in Computer Science(), vol 11865. Springer, Cham. https://doi.org/10.1007/978-3-030-30985-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-30985-5_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30984-8
Online ISBN: 978-3-030-30985-5
eBook Packages: Computer ScienceComputer Science (R0)