[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Axiomatization of Strong Distribution Bisimulation for a Language with a Parallel Operator and Probabilistic Choice

  • Chapter
  • First Online:
From Software Engineering to Formal Methods and Tools, and Back

Abstract

In the setting of a simple process language featuring non-deterministic choice and a parallel operator on the one hand and probabilistic choice on the other hand, we propose an axiomatization capturing strong distribution bisimulation. Contrary to other process equivalences for probabilistic process languages, in this paper distributions rather than states are the leading ingredients for building the semantics and the accompanying equational theory, for which we establish soundness and completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andova, S., Baeten, J.C.M., Willemse, T.A.C.: A complete axiomatisation of branching bisimulation for probabilistic systems with an application in protocol verification. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 327–342. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949_22

    Chapter  Google Scholar 

  2. Andova, S., Willemse, T.A.C.: Branching bisimulation for probabilistic systems: characteristics and decidability. Theor. Comput. Sci. 356, 325–355 (2006)

    Article  MathSciNet  Google Scholar 

  3. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of Communicating Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50. CUP, Cambridge (2010)

    MATH  Google Scholar 

  4. Baeten, J.C.M., Bergstra, J.A., Smolka, S.A.: Axiomatizing probabilistic processes: ACP with generative probabilities. Inf. Comput. 121(2), 234–255 (1995)

    Article  MathSciNet  Google Scholar 

  5. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. J. Comput. Syst. Sci. 60, 187–231 (2000)

    Article  MathSciNet  Google Scholar 

  6. Bandini, E., Segala, R.: Axiomatizations for probabilistic bisimulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–381. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_31

    Chapter  Google Scholar 

  7. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of model checkers. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 312–328. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15545-6_20

    Chapter  Google Scholar 

  8. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf. Control 60(1–3), 109–137 (1984)

    Article  MathSciNet  Google Scholar 

  9. Bernardo, M., Gorrieri, R.: Extended Markovian process algebra. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61604-7_63

    Chapter  Google Scholar 

  10. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_2

    Chapter  Google Scholar 

  11. Crafa, S., Ranzato, F.: Logical characterizations of behavioral relations on transition systems of probability distributions. ACM Trans. Comput. Logic 16(1), 2:1–2:24 (2014)

    Article  MathSciNet  Google Scholar 

  12. Deng, Y., Hennessy, M.: On the semantics of Markov automata. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 307–318. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_24

    Chapter  MATH  Google Scholar 

  13. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222, 139–168 (2013)

    Article  MathSciNet  Google Scholar 

  14. Deng, Y., Palamidessi, C.: Axiomatizations for probabilistic finite-state behaviors. Theor. Comput. Sci. 373, 92–114 (2007)

    Article  MathSciNet  Google Scholar 

  15. Deng, Y., Palamidessi, C., Pang, J.: Compositional reasoning for probabilistic finite-state behaviors. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 309–337. Springer, Heidelberg (2005). https://doi.org/10.1007/11601548_17

    Chapter  Google Scholar 

  16. Eisentraut, C., Hermanns, H., Krämer, J., Turrini, A., Zhang, L.: Deciding bisimilarities on distributions. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 72–88. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1_6

    Chapter  Google Scholar 

  17. Fischer, N., van Glabbeek, R.: Axiomatising infinitary probabilistic weak bisimilarity of finite-state behaviours. J. Log. Algebr. Methods Program. 102, 64–102 (2019)

    Article  MathSciNet  Google Scholar 

  18. Giacalone, A., Jou, C.-C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Broy, M. (ed.) Proceedings of IFIP WG 2.2 & 2.3 Working Conference on Programming Concepts and Methods, pp. 443–458 (1990)

    Google Scholar 

  19. Gnesi, S., ter Beek, M.H.: From the archives of the formal methods and tools lab. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed Programming. LNCS, vol. 11665, pp. 219–235. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21485-2_13

    Chapter  Google Scholar 

  20. Gnesi, S., Larosa, S.: A sound and complete axiom system for the logic ACTL. In: De Santis, A. (ed.) Proceedings of ICTCS 1995, Ravello, 9–11 November 1995, pp. 291–306 (1995)

    Google Scholar 

  21. Groote, J.F., Rivera Verduzco, H.J., de Vink, E.P.: An efficient algorithm to determine probabilistic bisimulation. Algorithms 11(9), 131–1-22 (2018)

    Article  MathSciNet  Google Scholar 

  22. Groote, J.F., de Vink, E.P.: A complete axiomatization of branching bisimulation for a simple process language with probabilistic choice, Submitted

    Google Scholar 

  23. Groote, J.F., de Vink, E.P.: Problem solving using process algebra considered insightful. In: Katoen, J.-P., Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 48–63. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9_3

    Chapter  Google Scholar 

  24. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Proceedings of RTSS 1990, pp. 278–287. IEEE (1990)

    Google Scholar 

  25. Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Aspects Comput. 24, 749–768 (2012)

    Article  MathSciNet  Google Scholar 

  26. Hillston, J.: A compositional approach to performance modelling. Ph.D thesis, University of Edinburgh (1994)

    Google Scholar 

  27. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94, 1–28 (1991)

    Article  MathSciNet  Google Scholar 

  28. Latella, D., Massink, M., de Vink, E.P.: Bisimulation of labelled state-to-function transition systems coalgebraically. Log. Methods Comput. Sci. 11(4) (2015). https://doi.org/10.2168/LMCS-11(4:16)2015, https://lmcs.episciences.org/1617

  29. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  30. Moller, F.: The importance of the left merge operator in process algebras. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 752–764. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032072

    Chapter  Google Scholar 

  31. Parma, A., Segala, R.: Logical characterizations of bisimulations for discrete probabilistic systems. In: Seidl, H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 287–301. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71389-0_21

    Chapter  MATH  Google Scholar 

  32. Segala, R.: Modeling and Verification of Randomzied Distributed Real-Time Systems. Ph.D thesis, MIT (1995). Technical report MIT/LCS/TR-676

    Google Scholar 

  33. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1_35

    Chapter  Google Scholar 

  34. Stark, E.W., Smolka, S.A.: A complete axiom system for finite-state probabilistic processes. In: Plotkin, G.D., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction, Essays in Honour of Robin Milner, pp. 571–596. The MIT Press (2000)

    Google Scholar 

  35. Valmari, A.: Simple bisimilarity minimization in O(mlogn) time. Fundamenta Informaticae 105(3), 319–339 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

JFG acknowledges the mutual inspiration of the development teams of mCRL2 and KandISTI. A nice example is the inclusion of the LTS minimization algorithm as provided in the mCRL2 toolset which has been incorporated in the KandISTI family members UMC and FMC. Also the attention for model checking of variability and software product lines with the mCRL2 toolset is such an example. EV acknowledges the warm hospitality of Stefania Gnesi and her research group at the CNR in Pisa at various occasions and the many pasti accoglienti shared together.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik P. de Vink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Groote, J.F., de Vink, E.P. (2019). An Axiomatization of Strong Distribution Bisimulation for a Language with a Parallel Operator and Probabilistic Choice. In: ter Beek, M., Fantechi, A., Semini, L. (eds) From Software Engineering to Formal Methods and Tools, and Back. Lecture Notes in Computer Science(), vol 11865. Springer, Cham. https://doi.org/10.1007/978-3-030-30985-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30985-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30984-8

  • Online ISBN: 978-3-030-30985-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics