Abstract
We study a process algebra which combines both nondeterministic and probabilistic behavior in the style of Segala and Lynch’s simple probabilistic automata. We consider strong bisimulation and observational equivalence, and provide complete axiomatizations for a language that includes parallel composition and (guarded) recursion. The presence of the parallel composition introduces various technical difficulties and some restrictions are necessary in order to achieve complete axiomatizations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aceto, L., Ésik, Z., Ingólfsdóttir, A.: Equational axioms for probabilistic bisimilarity (preliminary report). Technical Report RS-02-6, BRICS (2002)
Aceto, L., Fokkink, W.J.: The quest for equational axiomatizations of parallel composition: Status and open problems. In: Proceedings of the Workshop on Algebraic Process Calculi: The First Twenty Five Years and Beyond. BRICS Notes Series (2005) (to appear)
Andova, S.: Probabilistic Process Algebra. PhD thesis, Eindhoven University of Technology (2002)
Baeten, J.C.M., Bergstra, J.A., Smolka, S.A.: Axiomatizing probabilistic processes: ACP with generative probabilities. Information and Computation 121(2), 234–255 (1995)
Baeten, J.C.M., Bravetti, M.: A ground-complete axiomatization of finite state processes in process algebra. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 248–262. Springer, Heidelberg (2005)
Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)
Bandini, E., Segala, R.: Axiomatizations for probabilistic bisimulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–381. Springer, Heidelberg (2001)
Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communications. Information and Control 60, 109–137 (1984)
Bergstra, J.A., Klop, J.W.: Verification of an alternating bit protocol by means of process algebra. In: Bibel, W., Jantke, K.P. (eds.) Mathematical Methods of Specification and Synthesis of Software Systems 1985. LNCS, vol. 215, pp. 9–23. Springer, Heidelberg (1986)
Bergstra, J.A., Klop, J.W.: A complete inference system for regular processes with silent moves. In: Proceedings of Logic Colloquium 1986, pp. 21–81. North Holland, Amsterdam (1988)
Bravetti, M., Gorrieri, R.: Deciding and axiomatizing weak ST bisimulation for a process algebra with recursion and action refinement. ACM Transactions on Computational Logic 3(4), 465–520 (2002)
Christensen, S.: Decidability and Decomposition in Process Algebras. PhD thesis, University of Edinburgh (1993)
Christensen, S., Hirshfeld, Y., Moller, F.: Decidable subsets of ccs. Computer Journal 37(4), 233–242 (1994)
D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: On generative parallel composition. Electronic Notes in Theoretical Computer Science 22 (1999)
Deng, Y.: Axiomatisations and types for probabilistic and mobile processes. PhD thesis, Ecole des Mines de Paris (2005)
Deng, Y., Palamidessi, C.: Axiomatizations for probabilistic finite-state behaviors. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 110–124. Springer, Heidelberg (2005)
Fokkink, W.J., Groote, J.F., Pang, J., Badban, B., van de Pol, J.C.: Verifying a sliding window protocol in μCRL. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 148–163. Springer, Heidelberg (2004)
Giacalone, A., Jou, C.-C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of IFIP WG 2.2/2.3 Working Conference on Programming Concepts and Methods, pp. 453–459 (1990)
Groote, J.F., Ponse, A., Usenko, Y.S.: Linearization in parallel pCRL. Journal of Logic and Algebraic Programming 48(1-2), 39–72 (2001)
Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of ACM 32, 137–161 (1985)
Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)
Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)
Larsen, K.G., Skou, A.: Compositional verification of probabilistic processes. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 456–471. Springer, Heidelberg (1992)
Lynch, N.A., Saias, I., Segala, R.: Proving time bounds for randomized distributed algorithms. In: Proceedings of the 13th Annual ACM Symposium on the Principles of Distributed Computing, pp. 314–323 (1994)
Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Science 25, 267–310 (1983)
Milner, R.: A complete inference system for a class of regular behaviours. Journal of Computer and System Science 28, 439–466 (1984)
Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviours. Information and Computation 81, 227–247 (1989)
Pogosyants, A., Segala, R., Lynch, N.A.: Verification of the randomized consensus algorithm of Aspnes and Herlihy: a case study. Distributed Computing 13(3), 155–186 (2000)
Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)
Sokolova, A., de Vink, E.P.: Probabilistic automata: system types, parallel composition and comparison. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 1–43. Springer, Heidelberg (2004)
Stark, E.W., Smolka, S.A.: A complete axiom system for finite-state probabilistic processes. In: Proof, language, and interaction: essays in honour of Robin Milner, pp. 571–595. MIT Press, Cambridge (2000)
Stoelinga, M., Vaandrager, F.: Root contention in IEEE 1394. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 53–74. Springer, Heidelberg (1999)
Usenko, Y.S.: Linearization in μCRL. PhD thesis, Edindhoven University of Technology (2002)
van Glabbeek, R.J.: A complete axiomatization for branching bisimulation congruence of finite-state behaviours. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 473–484. Springer, Heidelberg (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Deng, Y., Palamidessi, C., Pang, J. (2005). Compositional Reasoning for Probabilistic Finite-State Behaviors. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds) Processes, Terms and Cycles: Steps on the Road to Infinity. Lecture Notes in Computer Science, vol 3838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11601548_17
Download citation
DOI: https://doi.org/10.1007/11601548_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30911-6
Online ISBN: 978-3-540-32425-6
eBook Packages: Computer ScienceComputer Science (R0)