[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

From LTL to Unambiguous Büchi Automata via Disambiguation of Alternating Automata

  • Conference paper
  • First Online:
Formal Methods – The Next 30 Years (FM 2019)

Abstract

This paper proposes a new algorithm for the generation of unambiguous Büchi automata (UBA) from LTL formulas. Unlike existing tableau-based LTL-to-UBA translations, our algorithm deals with very weak alternating automata (VWAA) as an intermediate representation. It relies on a new notion of unambiguity for VWAA and a disambiguation procedure for VWAA. We introduce optimizations on the VWAA level and new LTL simplifications targeted at generating small UBA. We report on an implementation of the construction in our tool Duggi and discuss experimental results that compare the automata sizes and computation times of Duggi with the tableau-based LTL-to-UBA translation of the SPOT tool set. Our experiments also cover the analysis of Markov chains under LTL specifications, which is an important application of UBA.

The authors are supported by the DFG through the Collaborative Research Centers CRC 912 (HAEC), the DFG grant 389792660 as part of TRR 248, the DFG-project BA-1679/12-1, the Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence Strategy), and the Research Training Group QuantLA (GRK 1763).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Duggi and the PRISM implementation, together with all experimental data, are available at https://wwwtcs.inf.tu-dresden.de/ALGI/TR/FM19-UBA/.

References

  1. Arnold, A.: Deterministic and non ambiguous rational \(\omega \)-languages. In: Nivat, M., Perrin, D. (eds.) LITP 1984. LNCS, vol. 192, pp. 18–27. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15641-0_20

    Chapter  Google Scholar 

  2. Babiak, T., et al.: The Hanoi omega-automata format. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_31

    Chapter  Google Scholar 

  3. Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_8

    Chapter  MATH  Google Scholar 

  4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  5. Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov chains and unambiguous Büchi automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 23–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_2

    Chapter  Google Scholar 

  6. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 32–46. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_3

    Chapter  MATH  Google Scholar 

  7. Bousquet, N., Löding, C.: Equivalence and inclusion problem for strongly unambiguous Büchi automata. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 118–129. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13089-2_10

    Chapter  MATH  Google Scholar 

  8. Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci. 297(1–3), 37–81 (2003)

    Article  Google Scholar 

  9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2001)

    Book  Google Scholar 

  10. Colcombet, T.: Unambiguity in automata theory. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19225-3_1

    Chapter  Google Scholar 

  11. Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2_16

    Chapter  Google Scholar 

  12. Couvreur, J.-M., Saheb, N., Sutre, G.: An optimal automata approach to LTL model checking of probabilistic systems. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS (LNAI), vol. 2850, pp. 361–375. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39813-4_26

    Chapter  Google Scholar 

  13. Duret-Lutz, A.: Manipulating LTL formulas using spot 1.0. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_31

    Chapter  Google Scholar 

  14. Duret-Lutz, A.: Contributions to LTL and \(\omega \)-automata for model checking. Habilitation thesis, Université Pierre et Marie Curie (Paris 6), February 2017

    Google Scholar 

  15. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0—a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

    Chapter  Google Scholar 

  16. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4_13

    Chapter  Google Scholar 

  17. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_6

    Chapter  Google Scholar 

  18. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Dembiński, P., Średniawa, M. (eds.) Protocol Specification, Testing and Verification XV, PSTV 1995. IFIP Advances in Information and Communication Technology, vol. 38, pp. 3–18. Springer, Boston (1996). https://doi.org/10.1007/978-0-387-34892-6_1

    Chapter  Google Scholar 

  19. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4

    Book  MATH  Google Scholar 

  20. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model checking without determinisation. In: 26th International Conference on Concurrency Theory (CONCUR 2015), Leibniz International Proceedings in Informatics (LIPIcs), vol. 42, pp. 354–367. SchlossDagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2015)

    Google Scholar 

  21. Haverkort, B.R., Hermanns, H., Katoen, J.P.: On the use of model checking techniques for dependability evaluation. In: 19th IEEE Symposium on Reliable Distributed Systems (SRDS), pp. 228–237. IEEE Computer Society (2000)

    Google Scholar 

  22. Isaak, D., Löding, C.: Efficient inclusion testing for simple classes of unambiguous \(\omega \)-automata. Inf. Process. Lett. 112(14–15), 578–582 (2012)

    Article  MathSciNet  Google Scholar 

  23. Jantsch, S., Müller, D., Baier, C., Klein, J.: From LTL to unambiguous Büchi automata via disambiguation of alternating automata. Technical report, Technische Universität Dresden (2019). https://arxiv.org/abs/1907.02887/

  24. Karmarkar, H., Joglekar, M., Chakraborty, S.: Improved upper and lower bounds for Büchi disambiguation. In: Proceedings of the 11th International Symposium on Automated Technology for Verification and Analysis (ATVA), pp. 40–54 (2013)

    Google Scholar 

  25. Kretínský, J., Meggendorfer, T., Sickert, S.: LTL store: repository of LTL formulae from literature and case studies. CoRR abs/1807.03296 (2018). http://arxiv.org/abs/1807.03296

  26. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In: Proceedings of the 9th International Conference on Quantitative Evaluation of SysTems (QEST), pp. 203–204. IEEE Computer Society (2012)

    Google Scholar 

  27. Löding, C.: Efficient minimization of deterministic weak \(\omega \)-automata. Inf. Process. Lett. 79(3), 105–109 (2001)

    Article  MathSciNet  Google Scholar 

  28. Loding, C., Thomas, W.: Alternating automata and logics over infinite words. In: van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS 2000. LNCS, vol. 1872, pp. 521–535. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44929-9_36

    Chapter  Google Scholar 

  29. Mohri, M.: On the disambiguation of finite automata and functional transducers. Int. J. Found. Comput. Sci. 24(6), 847–862 (2013)

    Article  MathSciNet  Google Scholar 

  30. Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: Proceedings of the 8th International Symposium on Games, Automata, Logics and Formal Verification (GandALF). Electronic Proceedings in Theoretical Computer Science, vol. 256, pp. 180–194. Open Publishing Association (2017)

    Google Scholar 

  31. Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time. In: Proceedings of the Third Annual Symposium on Logic in Computer Science (LICS), pp. 422–427 (1988)

    Google Scholar 

  32. Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theor. Comput. Sci. 54, 267–276 (1987)

    Article  MathSciNet  Google Scholar 

  33. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_21

    Chapter  Google Scholar 

  34. Stearns, R.E., Hunt, H.B.: On the equivalence and containment problem for unambiguous regular expressions, grammars, and automata. SIAM J. Comput. 14, 598–611 (1985)

    Article  MathSciNet  Google Scholar 

  35. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of the 26th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 327–338. IEEE Computer Society (1985)

    Google Scholar 

  36. Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57887-0_116

    Chapter  Google Scholar 

  37. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: Proceedings of the 1st Symposium on Logic in Computer Science (LICS), pp. 332–344. IEEE Computer Society Press (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jantsch, S., Müller, D., Baier, C., Klein, J. (2019). From LTL to Unambiguous Büchi Automata via Disambiguation of Alternating Automata. In: ter Beek, M., McIver, A., Oliveira, J. (eds) Formal Methods – The Next 30 Years. FM 2019. Lecture Notes in Computer Science(), vol 11800. Springer, Cham. https://doi.org/10.1007/978-3-030-30942-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30942-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30941-1

  • Online ISBN: 978-3-030-30942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics