Abstract
This paper proposes a new algorithm for the generation of unambiguous Büchi automata (UBA) from LTL formulas. Unlike existing tableau-based LTL-to-UBA translations, our algorithm deals with very weak alternating automata (VWAA) as an intermediate representation. It relies on a new notion of unambiguity for VWAA and a disambiguation procedure for VWAA. We introduce optimizations on the VWAA level and new LTL simplifications targeted at generating small UBA. We report on an implementation of the construction in our tool Duggi and discuss experimental results that compare the automata sizes and computation times of Duggi with the tableau-based LTL-to-UBA translation of the SPOT tool set. Our experiments also cover the analysis of Markov chains under LTL specifications, which is an important application of UBA.
The authors are supported by the DFG through the Collaborative Research Centers CRC 912 (HAEC), the DFG grant 389792660 as part of TRR 248, the DFG-project BA-1679/12-1, the Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence Strategy), and the Research Training Group QuantLA (GRK 1763).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Duggi and the PRISM implementation, together with all experimental data, are available at https://wwwtcs.inf.tu-dresden.de/ALGI/TR/FM19-UBA/.
References
Arnold, A.: Deterministic and non ambiguous rational \(\omega \)-languages. In: Nivat, M., Perrin, D. (eds.) LITP 1984. LNCS, vol. 192, pp. 18–27. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15641-0_20
Babiak, T., et al.: The Hanoi omega-automata format. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_31
Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_8
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov chains and unambiguous Büchi automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 23–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_2
Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 32–46. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_3
Bousquet, N., Löding, C.: Equivalence and inclusion problem for strongly unambiguous Büchi automata. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 118–129. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13089-2_10
Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci. 297(1–3), 37–81 (2003)
Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2001)
Colcombet, T.: Unambiguity in automata theory. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19225-3_1
Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2_16
Couvreur, J.-M., Saheb, N., Sutre, G.: An optimal automata approach to LTL model checking of probabilistic systems. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS (LNAI), vol. 2850, pp. 361–375. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39813-4_26
Duret-Lutz, A.: Manipulating LTL formulas using spot 1.0. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_31
Duret-Lutz, A.: Contributions to LTL and \(\omega \)-automata for model checking. Habilitation thesis, Université Pierre et Marie Curie (Paris 6), February 2017
Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0—a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8
Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4_13
Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_6
Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Dembiński, P., Średniawa, M. (eds.) Protocol Specification, Testing and Verification XV, PSTV 1995. IFIP Advances in Information and Communication Technology, vol. 38, pp. 3–18. Springer, Boston (1996). https://doi.org/10.1007/978-0-387-34892-6_1
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4
Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model checking without determinisation. In: 26th International Conference on Concurrency Theory (CONCUR 2015), Leibniz International Proceedings in Informatics (LIPIcs), vol. 42, pp. 354–367. SchlossDagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2015)
Haverkort, B.R., Hermanns, H., Katoen, J.P.: On the use of model checking techniques for dependability evaluation. In: 19th IEEE Symposium on Reliable Distributed Systems (SRDS), pp. 228–237. IEEE Computer Society (2000)
Isaak, D., Löding, C.: Efficient inclusion testing for simple classes of unambiguous \(\omega \)-automata. Inf. Process. Lett. 112(14–15), 578–582 (2012)
Jantsch, S., Müller, D., Baier, C., Klein, J.: From LTL to unambiguous Büchi automata via disambiguation of alternating automata. Technical report, Technische Universität Dresden (2019). https://arxiv.org/abs/1907.02887/
Karmarkar, H., Joglekar, M., Chakraborty, S.: Improved upper and lower bounds for Büchi disambiguation. In: Proceedings of the 11th International Symposium on Automated Technology for Verification and Analysis (ATVA), pp. 40–54 (2013)
Kretínský, J., Meggendorfer, T., Sickert, S.: LTL store: repository of LTL formulae from literature and case studies. CoRR abs/1807.03296 (2018). http://arxiv.org/abs/1807.03296
Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In: Proceedings of the 9th International Conference on Quantitative Evaluation of SysTems (QEST), pp. 203–204. IEEE Computer Society (2012)
Löding, C.: Efficient minimization of deterministic weak \(\omega \)-automata. Inf. Process. Lett. 79(3), 105–109 (2001)
Loding, C., Thomas, W.: Alternating automata and logics over infinite words. In: van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS 2000. LNCS, vol. 1872, pp. 521–535. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44929-9_36
Mohri, M.: On the disambiguation of finite automata and functional transducers. Int. J. Found. Comput. Sci. 24(6), 847–862 (2013)
Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: Proceedings of the 8th International Symposium on Games, Automata, Logics and Formal Verification (GandALF). Electronic Proceedings in Theoretical Computer Science, vol. 256, pp. 180–194. Open Publishing Association (2017)
Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time. In: Proceedings of the Third Annual Symposium on Logic in Computer Science (LICS), pp. 422–427 (1988)
Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theor. Comput. Sci. 54, 267–276 (1987)
Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_21
Stearns, R.E., Hunt, H.B.: On the equivalence and containment problem for unambiguous regular expressions, grammars, and automata. SIAM J. Comput. 14, 598–611 (1985)
Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of the 26th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 327–338. IEEE Computer Society (1985)
Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57887-0_116
Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: Proceedings of the 1st Symposium on Logic in Computer Science (LICS), pp. 332–344. IEEE Computer Society Press (1986)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Jantsch, S., Müller, D., Baier, C., Klein, J. (2019). From LTL to Unambiguous Büchi Automata via Disambiguation of Alternating Automata. In: ter Beek, M., McIver, A., Oliveira, J. (eds) Formal Methods – The Next 30 Years. FM 2019. Lecture Notes in Computer Science(), vol 11800. Springer, Cham. https://doi.org/10.1007/978-3-030-30942-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-30942-8_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30941-1
Online ISBN: 978-3-030-30942-8
eBook Packages: Computer ScienceComputer Science (R0)