Preview
Unable to display preview. Download preview PDF.
References
A. Arnold. Rational ω-languages are non-ambiguous (Note). Theoret. Comput. Sci. 26 (1983) 221–223.
A. Arnold. Topological characterizations of infinite behaviours of transition systems. in "Automata, Languages and Programming", 10th Colloquium, Barcelona, 1983 (J. Diaz, ed), LNCS 154 (1983) 28–38.
S. Eilenberg. Automata, Languages and Machines. Vol. A, Academic Press, New-York (1974).
K. Kuratowski. Topology I. Academic Press, New-York (1966).
L.H. Landweber. Decision problems for ω-automata. Math. System Theor. 3 (1969) 376–384.
L. Staiger. Finite-State ω-languages. J. Comput. System Sci. 27 (1983) 434–448.
L. Staiger, K. Wagner. Automaton theoretische und automatonfreie charakterisierungen topologischer Klassen regulärer Folgenmangen. EIK 10 (1974) 379–392.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1985 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arnold, A. (1985). Deterministic and non ambiguous rational ω-languages. In: Nivat, M., Perrin, D. (eds) Automata on Infinite Words. LITP 1984. Lecture Notes in Computer Science, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-15641-0_20
Download citation
DOI: https://doi.org/10.1007/3-540-15641-0_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-15641-3
Online ISBN: 978-3-540-39505-8
eBook Packages: Springer Book Archive