[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2019 (ASIACRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11922))

Abstract

Multipartite secret sharing schemes are those having a multipartite access structure, in which the set of participants is divided into several parts and all participants in the same part play an equivalent role. Secret sharing schemes for multipartite access structures have received considerable attention due to the fact that multipartite secret sharing can be seen as a natural and useful generalization of threshold secret sharing.

This work deals with efficient and explicit constructions of ideal multipartite secret sharing schemes, while most of the known constructions are either inefficient or randomized. Most ideal multipartite secret sharing schemes in the literature can be classified as either hierarchical or compartmented. The main results are the constructions for ideal hierarchical access structures, a family that contains every ideal hierarchical access structure as a particular case such as the disjunctive hierarchical threshold access structure and the conjunctive hierarchical threshold access structure, and the constructions for compartmented access structures with upper bounds and compartmented access structures with lower bounds, two families of compartmented access structures.

On the basis of the relationship between multipartite secret sharing schemes, polymatroids, and matroids, the problem of how to construct a scheme realizing a multipartite access structure can be transformed to the problem of how to find a representation of a matroid from a presentation of its associated polymatroid. In this paper, we give efficient algorithms to find representations of the matroids associated to the three families of multipartite access structures. More precisely, based on know results about integer polymatroids, for each of the three families of access structures, we give an efficient method to find a representation of the integer polymatroid over some finite field, and then over some finite extension of that field, we give an efficient method to find a presentation of the matroid associated to the integer polymatroid. Finally, we construct ideal linear schemes realizing the three families of multipartite access structures by efficient methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ball, S., Padró, C., Weiner, Z., Xing, C.: On the representability of the biuniform matroid. SIAM J. Discrete Math. 27(3), 1482–1491 (2013)

    Article  MathSciNet  Google Scholar 

  2. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_2

    Chapter  Google Scholar 

  3. Beimel, A., Chor, B.: Universally ideal secret sharing schemes. IEEE Trans. Inf. Theory 40(3), 786–794 (1994)

    Article  MathSciNet  Google Scholar 

  4. Beimel, A., Tassa, T., Weinreb, E.: Characterizing ideal weighted threshold secret sharing. SIAM J. Discrete Math. 22(1), 360–397 (2008)

    Article  MathSciNet  Google Scholar 

  5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 1–10 (1988)

    Google Scholar 

  6. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_3

    Chapter  Google Scholar 

  7. Beutelspacher, A., Wettl, F.: On 2-level secret sharing. Des. Codes Cryptogr. 3(2), 127–134 (1993)

    Article  MathSciNet  Google Scholar 

  8. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference 1979, AFIPS Proceedings, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  9. Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Maths. Combin. Comp. 9, 105–113 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. Cryptol. 4, 123–134 (1991)

    MATH  Google Scholar 

  11. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 11–19 (1988)

    Google Scholar 

  12. Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. J. Cryptol. 6(2), 87–96 (1993)

    Article  MathSciNet  Google Scholar 

  13. Collins, M.J.: A note on ideal tripartite access structures. Cryptology ePrint Archive, Report 2002/193. http://eprint.iacr.org/2002/193

  14. Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_22

    Chapter  Google Scholar 

  15. Cramer, R., et al.: On codes, matroids and secure multi-party computation from linear secret sharing schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 327–343. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_20

    Chapter  Google Scholar 

  16. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_28

    Chapter  Google Scholar 

  17. Farràs, O., Martí-Farré, J., Padró, C.: Ideal multipartite secret sharing schemes. J. Cryptol. 25(3), 434–463 (2012)

    Article  MathSciNet  Google Scholar 

  18. Farràs, O., Padró, C.: Ideal hierarchical secret sharing schemes. IEEE Trans. Inf. Theory 58(5), 3273–3286 (2012)

    Article  MathSciNet  Google Scholar 

  19. Farràs, O., Padró, C., Xing, C., Yang, A.: Natural generalizations of threshold secret sharing. IEEE Trans. Inf. Theory 60(3), 1652–1664 (2014)

    Article  MathSciNet  Google Scholar 

  20. Fehr, S.: Efficient construction of the dual span program. Manuscript, May (1999)

    Google Scholar 

  21. Giulietti, M., Vincenti, R.: Three-level secret sharing schemes from the twisted cubic. Discrete Math. 310(22), 3236–3240 (2010)

    Article  MathSciNet  Google Scholar 

  22. Herranz, J., Sáez, G.: New results on multipartite access structures. IEE Proc. Inf. Secur. 153(4), 153–162 (2006)

    Article  Google Scholar 

  23. Herzog, J., Hibi, T.: Discrete polymatroids. J. Algebraic Combinat. 16(3), 239–268 (2002)

    Article  MathSciNet  Google Scholar 

  24. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Proceedings of the IEEE Global Telecommunication Conference, Globecom 1987, pp. 99–102 (1987)

    Google Scholar 

  25. Kothari, S.C.: Generalized linear threshold scheme. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 231–241. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_19

    Chapter  Google Scholar 

  26. Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian Workshop on Information Theory, pp. 276–279 (1993)

    Google Scholar 

  27. Massey, J.L.: Some applications of coding theory in cryptography. Codes and Ciphers: Cryptography and Coding IV, pp. 33–47 (1995)

    Google Scholar 

  28. Oxley, J.G.: Matroid Theory. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1992)

    MATH  Google Scholar 

  29. Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. IEEE Trans. Inf. Theory 46(7), 2596–2604 (2000)

    Article  MathSciNet  Google Scholar 

  30. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  31. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  32. Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77444-0_31

    Chapter  Google Scholar 

  33. Shoup, V.: New algorithm for finding irreducible polynomials over finite fields. Math. Comput. 54, 435–447 (1990)

    Article  MathSciNet  Google Scholar 

  34. Simmons, G.J.: How to (really) share a secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_30

    Chapter  Google Scholar 

  35. Tassa, T.: Hierarchical threshold secret sharing. J. Cryptol. 20(2), 237–264 (2007)

    Article  MathSciNet  Google Scholar 

  36. Tassa, T.: Generalized oblivious transfer by secret sharing. Des. Codes Cryptol. 58(1), 11–21 (2011)

    Article  MathSciNet  Google Scholar 

  37. Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. J. Cryptol. 22(2), 227–258 (2009)

    Article  MathSciNet  Google Scholar 

  38. Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their helpful comments and suggestions. This research was supported in part by the Foundation of National Natural Science of China (No. 61772147, 61702124), Guangdong Province Natural Science Foundation of major basic research and Cultivation project (No. 2015A030308016), Project of Ordinary University Innovation Team Construction of Guangdong Province (No. 2015KCXTD014), Collaborative Innovation Major Projects of Bureau of Education of Guangzhou City (No. 1201610005) and National Cryptography Development Fund (No. MMJJ20170117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Q., Tang, C., Lin, Z. (2019). Efficient Explicit Constructions of Multipartite Secret Sharing Schemes. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11922. Springer, Cham. https://doi.org/10.1007/978-3-030-34621-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34621-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34620-1

  • Online ISBN: 978-3-030-34621-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics