Abstract
A secret-sharing scheme is a method by which a dealer distributes shares to parties such that only authorized subsets of parties can reconstruct the secret. Secret-sharing schemes are an important tool in cryptography and they are used as a building box in many secure protocols, e.g., general protocol for multiparty computation, Byzantine agreement, threshold cryptography, access control, attribute-based encryption, and generalized oblivious transfer.
In this survey, we describe the most important constructions of secret-sharing schemes; in particular, we explain the connections between secret-sharing schemes and monotone formulae and monotone span programs. We then discuss the main problem with known secret-sharing schemes – the large share size, which is exponential in the number of parties. We conjecture that this is unavoidable. We present the known lower bounds on the share size. These lower bounds are fairly weak and there is a big gap between the lower and upper bounds. For linear secret-sharing schemes, which is a class of schemes based on linear algebra that contains most known schemes, super-polynomial lower bounds on the share size are known. We describe the proofs of these lower bounds. We also present two results connecting secret-sharing schemes for a Hamiltonian access structure to the NP vs. coNP problem and to a major open problem in cryptography – constructing oblivious-transfer protocols from one-way functions.
Research supported by ISF grant 938/09 and by the Frankel Center for Computer Science.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Random Structures & Algorithms 3, 289–304 (1992)
Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone span programs. Combinatorica 19(3), 301–319 (1999)
Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Technion (1996), http://www.cs.bgu.ac.il/~beimel/pub.html
Beimel, A., Chor, B.: Universally ideal secret sharing schemes. IEEE Trans. on Information Theory 40(3), 786–794 (1994)
Beimel, A., Gál, A., Paterson, M.: Lower bounds for monotone span programs. Computational Complexity 6(1), 29–45 (1997); Conference version: FOCS 1995
Beimel, A., Ishai, Y.: On the power of nonlinear secret-sharing. SIAM J. on Discrete Mathematics 19(1), 258–280 (2005)
Beimel, A., Livne, N., Padró, C.: Matroids can be far from ideal secret sharing. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 194–212. Springer, Heidelberg (2008)
Beimel, A., Orlov, I.: Secret sharing and non-shannon information inequalities. IEEE Trans. on Information Theory (2011); Preliminary version Reingold, O. (ed.): TCC 2009. LNCS, vol. 5444, pp. 539–557. Springer, Heidelberg (2009)
Beimel, A., Paskin, A.: On linear secret sharing for connectivity in directed graphs. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 172–184. Springer, Heidelberg (2008)
Beimel, A., Weinreb, E.: Separating the power of monotone span programs over different fields. SIAM J. on Computing 34(5), 1196–1215 (2005)
Beimel, A., Weinreb, E.: Monotone circuits for monotone weighted threshold functions. Inform. Process. Lett. 97(1), 12–18 (2006); Conference version: Proc. of 20th Annu. IEEE Conf. on Computational Complexity, pp. 67–75 (2005)
Bellare, M., Rogaway, P.: Robust computational secret sharing and a unified account of classical secret-sharing goals. In: Proc. of the 14th ACM Conference on Computer and Communications Security, pp. 172–184 (2007)
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: Proc. of the 20th ACM Symp. on the Theory of Computing, pp. 1–10 (1988)
Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)
Benaloh, J.C., Rudich, S.: Private communication (1989)
Bertilsson, M., Ingemarsson, I.: A construction of practical secret sharing schemes using linear block codes. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 67–79. Springer, Heidelberg (1993)
Blakley, G.R.: Safeguarding cryptographic keys. In: Merwin, R.E., Zanca, J.T., Smith, M. (eds.) Proc. of the 1979 AFIPS National Computer Conference. AFIPS Conference Proceedings, vol. 48, pp. 313–317. AFIPS Press (1979)
Blundo, C., De Santis, A., De Simone, R., Vaccaro, U.: Tight bounds on the information rate of secret sharing schemes. Designs, Codes and Cryptography 11(2), 107–122 (1997)
Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. Theoretical Computer Science 154(2), 283–306 (1996)
Blundo, C., De Santis, A., Vaccaro, U.: On secret sharing schemes. Inform. Process. Lett. 65(1), 25–32 (1998)
Brickell, E.F.: Some ideal secret sharing schemes. Journal of Combin. Math. and Combin. Comput. 6, 105–113 (1989)
Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. of Cryptology 4(73), 123–134 (1991)
Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares for secret sharing schemes. J. of Cryptology 6(3), 157–168 (1993)
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proc. of the 20th ACM Symp. on the Theory of Computing, pp. 11–19 (1988)
Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract). In: Proc. of the 26th IEEE Symp. on Foundations of Computer Science, pp. 383–395 (1985)
Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. J. of Cryptology 6(2), 87–96 (1993)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Chichester (1991)
Cramer, R., Damgård, I.B., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)
Csirmaz, L.: The size of a share must be large. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 223–231. Springer, Heidelberg (1995); Journal version in: J. of Cryptology 10(4), 223–231 (1997)
Csirmaz, L.: The dealer’s random bits in perfect secret sharing schemes. Studia Sci. Math. Hungar. 32(3-4), 429–437 (1996)
Desmedt, Y.G., Frankel, Y.: Shared generation of authenticators and signatures. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992)
van Dijk, M.: A linear construction of perfect secret sharing schemes. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 23–34. Springer, Heidelberg (1995)
van Dijk, M.: On the information rate of perfect secret sharing schemes. Designs, Codes and Cryptography 6, 143–169 (1995)
van Dijk, M., Kevenaar, T., Schrijen, G.-J., Tuyls, P.: Improved constructions of secret sharing schemes by applying (λ],ω)-decompositions. Inform. Process. Lett. 99(4), 154–157 (2006)
Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. CACM 28(6), 637–647 (1985)
Gál, A.: A characterization of span program size and improved lower bounds for monotone span programs. Computational Complexity 10(4), 277–296 (2002)
Gál, A., Pudlák, P.: Monotone complexity and the rank of matrices. Inform. Process. Lett. 87, 321–326 (2003)
Gennaro, R., Rabin, M.O., Rabin, T.: Simplified vss and fact-track multiparty computations with applications to threshold cryptography. In: Proc. of the 17th ACM Symp. on Principles of Distributed Computing, pp. 101–111 (1998)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proc. of the 19th ACM Symp. on the Theory of Computing, pp. 218–229 (1987)
Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proc. of the 13th ACM Conference on Computer and Communications Security, pp. 89–98 (2006)
Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Construction of a pseudo-random generator from any one-way function. SIAM J. on Computing 28(4), 1364–1396 (1999)
Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect multiparty computation. J. of Cryptology 13(1), 31–60 (2000)
Impagliazzo, R.: A personal view of average-case complexity. In: Proc. of the 10th IEEE Structure in Complexity Theory, pp. 134–147 (1995)
Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Proc. of the 21st ACM Symp. on the Theory of Computing, pp. 44–61 (1989)
Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Proc. of the IEEE Global Telecommunication Conf., Globecom 1987, pp. 99–102 (1987); Journal version: Multiple assignment scheme for sharing secret. J. of Cryptology, 6(1), 15–20 (1993)
Karchmer, M., Wigderson, A.: On span programs. In: Proc. of the 8th IEEE Structure in Complexity Theory, pp. 102–111 (1993)
Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Trans. on Information Theory 29(1), 35–41 (1983)
Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)
Martí-Farré, J., Padró, C.: On secret sharing schemes, matroids and polymatroids. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 273–290. Springer, Heidelberg (2007)
Matúš, F.: Infinitely many information inequalities. In: IEEE International Symposium on Information Theory 2007, pp. 41–44 (2007)
Metcalf-Burton, J.R.: Improved upper bounds for the information rates of the secret sharing schemes induced by the Vamos matroid. Technical Report abs/0809.3010, CoRR (2008)
Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. IEEE Transactions on Parallel and Distributed Systems 9(1), 909–922 (1998)
Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken Computation Laboratory (1981), Available online in the Cryptology ePrint Archive, Report 2005/187, http://eprint.iacr.org/2005/187
Rabin, M.O.: Randomized Byzantine generals. In: Proc. of the 24th IEEE Symp. on Foundations of Computer Science, pp. 403–409 (1983)
Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: Proc. of the 22nd ACM Symp. on the Theory of Computing, pp. 387–394 (1990)
Rudich, S.: Private communication, via M. Naor (1989)
Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)
Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)
Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg (2008)
Simmons, G.J.: How to (really) share a secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, Heidelberg (1990)
Simmons, G.J., Jackson, W., Martin, K.M.: The geometry of shared secret schemes. Bulletin of the ICA 1, 71–88 (1991)
Simonis, J., Ashikhmin, A.: Almost affine codes. Designs, Codes and Cryptography 14(2), 179–197 (1998)
Stinson, D.R.: Decomposition construction for secret sharing schemes. IEEE Trans. on Information Theory 40(1), 118–125 (1994)
Tassa, T.: Hierarchical threshold secret sharing. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004)
Tassa, T.: Generalized oblivious transfer by secret sharing. Designs, Codes and Cryptography 58 (2011)
Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 288–299. Springer, Heidelberg (2006)
Vinod, V., Narayanan, A., Srinathan, K., Pandu Rangan, C., Kim, K.: On the power of computational secret sharing. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 162–176. Springer, Heidelberg (2003)
Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. Technical Report 2008/290, Cryptology ePrint Archive (2008), http://eprint.iacr.org/
Yao, A.C.: Unpublished manuscript. Presented at Oberwolfach and DIMACS Workshops (1989)
Yeung, R.W.: Information Theory and Network Coding. Springer, Heidelberg (2008)
Zhang, Z., Yeung, R.W.: On characterization of entropy function via information inequalities. IEEE Trans. on Information Theory 44(4), 1440–1452 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Beimel, A. (2011). Secret-Sharing Schemes: A Survey. In: Chee, Y.M., et al. Coding and Cryptology. IWCC 2011. Lecture Notes in Computer Science, vol 6639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20901-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-20901-7_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20900-0
Online ISBN: 978-3-642-20901-7
eBook Packages: Computer ScienceComputer Science (R0)