[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Guided Feature Selection for Deep Visual Odometry

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11366))

Included in the following conference series:

Abstract

We present a novel end-to-end visual odometry architecture with guided feature selection based on deep convolutional recurrent neural networks. Different from current monocular visual odometry methods, our approach is established on the intuition that features contribute discriminately to different motion patterns. Specifically, we propose a dual-branch recurrent network to learn the rotation and translation separately by leveraging current Convolutional Neural Network (CNN) for feature representation and Recurrent Neural Network (RNN) for image sequence reasoning. To enhance the ability of feature selection, we further introduce an effective context-aware guidance mechanism to force each branch to distill related information for specific motion pattern explicitly. Experiments demonstrate that on the prevalent KITTI and ICL_NUIM benchmarks, our method outperforms current state-of-the-art model- and learning-based methods for both decoupled and joint camera pose recovery.

Supported by the National Key Research and Development Program of China (2017YFB1002601) and National Natural Science Foundation of China (61632003, 61771026).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bazin, J.C., Demonceaux, C., Vasseur, P., Kweon, I.: Motion estimation by decoupling rotation and translation in catadioptric vision. CVIU 114, 254–273 (2010)

    Google Scholar 

  2. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40, 834–848 (2018)

    Google Scholar 

  3. Choi, J., et al.: Context-aware deep feature compression for high-speed visual tracking. In: CVPR (2018)

    Google Scholar 

  4. Clark, R., Wang, S., Wen, H., Markham, A., Trigoni, N.: VINet: visual-inertial odometry as a sequence-to-sequence learning problem. In: AAAI (2017)

    Google Scholar 

  5. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: Bundlefusion: real-time globally consistent 3D reconstruction using on-the-fly surface reintegration. TOG 36, 76a (2017)

    Google Scholar 

  6. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: ICCV (2015)

    Google Scholar 

  7. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. TPAMI 1, 4 (2017)

    Google Scholar 

  8. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  10. Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: dense 3D reconstruction in real-time. In: IV (2011)

    Google Scholar 

  11. Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: ICRA (2014)

    Google Scholar 

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: ICCV (2015)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Google Scholar 

  15. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  16. Jo, Y., Jang, J., Paik, J.: Camera orientation estimation using motion based vanishing point detection for automatic driving assistance system. In: ICCE (2018)

    Google Scholar 

  17. Kaess, M., Ni, K., Dellaert, F.: Flow separation for fast and robust stereo odometry. In: ICRA (2009)

    Google Scholar 

  18. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: ICRA (2013)

    Google Scholar 

  19. Kim, P., Coltin, B., Kim, H.J.: Visual odometry with drift-free rotation estimation using indoor scene regularities. In: BMVC (2017)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  21. Lee, J.K., Yoon, K.J., et al.: Real-time joint estimation of camera orientation and vanishing points. In: CVPR (2015)

    Google Scholar 

  22. Li, R., Wang, S., Long, Z., Gu, D.: UnDeepVO: monocular visual odometry through unsupervised deep learning. In: ICRA (2018)

    Google Scholar 

  23. Liu, N., Han, J.: PiCANet: learning pixel-wise contextual attention in ConvNets and its application in saliency detection. In: CVPR (2018)

    Google Scholar 

  24. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)

    Google Scholar 

  25. Mac Aodha, O., Perona, P., et al.: Context embedding networks. In: CVPR (2018)

    Google Scholar 

  26. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. T-RO 33, 1255–1262 (2017)

    Google Scholar 

  27. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)

    Google Scholar 

  28. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: ICCV (2011)

    Google Scholar 

  29. Paszke, A., Gross, S., Chintala, S., Chanan, G.: Pytorch (2017). https://github.com/pytorch/pytorch

  30. Paz, L.M., Piniés, P., Tardós, J.D., Neira, J.: Large-scale 6-DOF SLAM with stereo-in-hand. T-RO 24, 946–957 (2008)

    Google Scholar 

  31. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: ICCV (2011)

    Google Scholar 

  32. Straub, J., Bhandari, N., Leonard, J.J., Fisher, J.W.: Real-time Manhattan world rotation estimation in 3D. In: IROS (2015)

    Google Scholar 

  33. Tardif, J.P., Pavlidis, Y., Daniilidis, K.: Monocular visual odometry in urban environments using an omnidirectional camera. In: IROS (2008)

    Google Scholar 

  34. Ummenhofer, B., et al.: DeMoN: depth and motion network for learning monocular stereo. In: CVPR (2017)

    Google Scholar 

  35. Wang, S., Clark, R., Wen, H., Trigoni, N.: DeepVO: towards end-to-end visual odometry with deep recurrent convolutional neural networks. In: ICRA (2017)

    Google Scholar 

  36. Wang, S., Clark, R., Wen, H., Trigoni, N.: End-to-end, sequence-to-sequence probabilistic visual odometry through deep neural networks. IJRR 37, 513–542 (2017)

    Google Scholar 

  37. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NIPS (2015)

    Google Scholar 

  38. Yin, Z., Shi, J.: GeoNet: unsupervised learning of dense depth, optical flow and camera pose. In: CVPR (2018)

    Google Scholar 

  39. Zamir, A.R., Sax, A., Shen, W., Guibas, L., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: CVPR (2018)

    Google Scholar 

  40. Zhan, H., Garg, R., Saroj Weerasekera, C., Li, K., Agarwal, H., Reid, I.: Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction. In: CVPR (2018)

    Google Scholar 

  41. Zhang, H., et al.: Context encoding for semantic segmentation. In: CVPR (2018)

    Google Scholar 

  42. Zhang, J., Kaess, M., Singh, S.: Real-time depth enhanced monocular odometry. In: IROS (2014)

    Google Scholar 

  43. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR (2017)

    Google Scholar 

  44. Zhou, Y., Kneip, L., Rodriguez, C., Li, H.: Divide and conquer: efficient density-based tracking of 3D sensors in Manhattan worlds. In: ACCV (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Xue or Hongbin Zha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, F., Wang, Q., Wang, X., Dong, W., Wang, J., Zha, H. (2019). Guided Feature Selection for Deep Visual Odometry. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics