[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Construction of a New Implicit Difference Scheme for 2D Boussinesq Paradigm Equation

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11661))

Included in the following conference series:

  • 1003 Accesses

Abstract

Given an orthogonal and uniform solution grid with equal spatial grid sizes, we construct a new second-order implicit conservative finite difference scheme for the fourth-order 2D Boussinesq paradigm equation with quadratic nonlinear part. We apply the algebraic approach to the construction of difference schemes suggested by the first two authors and based on a combination of the finite volume method, difference elimination, and numerical integration. For the difference elimination, we make use of the techniques of Gröbner bases; in so doing, we introduce an extra difference indeterminate to reduce the nonlinear elimination problem to the pure linear one. It allows us to apply the Gröbner bases algorithm and software designed for linear generating sets of difference polynomials. Additionally, for the obtained difference scheme and also for another scheme known in the literature, we compute the modified differential equations and compare them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gerdt, V.P., Blinkov, Y.A., Mozzhilkin, V.V.: Gröbner bases and generation of difference schemes for partial differential equations. SIGMA 2, 051 (2006)

    MATH  Google Scholar 

  2. Christov, C.I.: An energy - consistent Galilean - invariant dispersive shallow - water model. Wave Motion 34, 161–174 (2001)

    Article  MathSciNet  Google Scholar 

  3. Christov, C.I., Kolkovska, N., Vasileva, D.: On the numerical simulation of unsteady solutions for the 2D Boussinesq paradigm equation. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 386–394. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18466-6_46

    Chapter  MATH  Google Scholar 

  4. Todorov, M.D.: Nonlinear Waves: Theory, Computer Simulation, Experiment. Morgan & Claypool Publishers, San Rafael (2018)

    MATH  Google Scholar 

  5. Koren, B., Abgrall, R., Bochev, P., Frank, J.: Physics-compatible numerical methods. J. Comput. Phys. 257, 1039–1526 (2014)

    Article  Google Scholar 

  6. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia (2004)

    MATH  Google Scholar 

  7. Gerdt, V.P., Robertz, D.: Consistency of finite difference approximations for linear PDE systems and its algorithmic verification. In: Watt, S.M. (ed.) ISSAC 2010, pp. 53–59. Association for Computing Machinery, New York (2010)

    Google Scholar 

  8. Gerdt, V.P.: Consistency analysis of finite difference approximations to PDE systems. In: Adam, G., Buša, J., Hnatič, M. (eds.) MMCP 2011. LNCS, vol. 7125, pp. 28–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28212-6_3

    Chapter  Google Scholar 

  9. Levin, A.: Difference Algebra. Algebra and Applications, vol. 8. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-6947-5

    Book  MATH  Google Scholar 

  10. Gerdt, V., La Scala, R.: Noetherian quotients of the algebra of partial difference polynomials and Gröbner bases of symmetric ideals. J. Algebra 423, 1233–1261 (2015)

    Article  MathSciNet  Google Scholar 

  11. https://github.com/blinkovua/GInv/tree/master/pyginv

  12. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory. In: Bose, N.K. (ed.) Recent Trends in Multidimensional System, pp. 184–232. Reidel, Dordrecht (1985)

    Chapter  Google Scholar 

  13. Adams, W.W., Loustanau, P.: Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3. American Mathematical Society (1994)

    Google Scholar 

  14. Robertz, D.: Formal Algorithmic Elimination for PDEs. LNM, vol. 2121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11445-3

    Book  MATH  Google Scholar 

  15. Chertock, A., Christov, C.I., Kurganov, A: Central-upwind schemes for Boussinesq paradigm equations. In: Krause, E., Shokin, Yu., Resch, M., Kröner, D., Shokina, N. (eds.) Computational Science and High Performance Computing IV, vol. 115, pp. 267–281 (2011)

    Google Scholar 

  16. Shokin, Y.I.: The Method of Differential Approximation, 1st edn. Springer, Heidelberg (1983)

    Book  Google Scholar 

  17. Ganzha, V.G., Vorozhtsov, E.V.: Computer-aided Analysis of Difference Schemes for Partial Differential Equations. Wiley, New York (1996)

    Book  Google Scholar 

  18. Moin, P.: Fundamentals of Engineering Numerical Analysis, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  19. Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24, 1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-01287-7

    Book  MATH  Google Scholar 

  20. Blinkov, Yu.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE package janet: II. Linear partial differential equations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing, CASC 2003, pp. 41–54. Technische Universität München (2003). Package Janet is freely available on the web page http://134.130.169.213/Janet/

  21. Gerdt, V.P., Robertz, D.: Computation of difference Gröbner bases. Comput. Sc. J. Moldova. 20(2), 203–226 (2012). Package LDA is freely available on the web page http://134.130.169.213/Janet/

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Russian Foundation for Basic Research (grant No. 18-51-18005) and by the RUDN University Program (5-100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Gerdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blinkov, Y.A., Gerdt, V.P., Pankratov, I.A., Kotkova, E.A. (2019). Construction of a New Implicit Difference Scheme for 2D Boussinesq Paradigm Equation. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26831-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26830-5

  • Online ISBN: 978-3-030-26831-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics