Abstract
Given an orthogonal and uniform solution grid with equal spatial grid sizes, we construct a new second-order implicit conservative finite difference scheme for the fourth-order 2D Boussinesq paradigm equation with quadratic nonlinear part. We apply the algebraic approach to the construction of difference schemes suggested by the first two authors and based on a combination of the finite volume method, difference elimination, and numerical integration. For the difference elimination, we make use of the techniques of Gröbner bases; in so doing, we introduce an extra difference indeterminate to reduce the nonlinear elimination problem to the pure linear one. It allows us to apply the Gröbner bases algorithm and software designed for linear generating sets of difference polynomials. Additionally, for the obtained difference scheme and also for another scheme known in the literature, we compute the modified differential equations and compare them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gerdt, V.P., Blinkov, Y.A., Mozzhilkin, V.V.: Gröbner bases and generation of difference schemes for partial differential equations. SIGMA 2, 051 (2006)
Christov, C.I.: An energy - consistent Galilean - invariant dispersive shallow - water model. Wave Motion 34, 161–174 (2001)
Christov, C.I., Kolkovska, N., Vasileva, D.: On the numerical simulation of unsteady solutions for the 2D Boussinesq paradigm equation. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 386–394. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18466-6_46
Todorov, M.D.: Nonlinear Waves: Theory, Computer Simulation, Experiment. Morgan & Claypool Publishers, San Rafael (2018)
Koren, B., Abgrall, R., Bochev, P., Frank, J.: Physics-compatible numerical methods. J. Comput. Phys. 257, 1039–1526 (2014)
Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia (2004)
Gerdt, V.P., Robertz, D.: Consistency of finite difference approximations for linear PDE systems and its algorithmic verification. In: Watt, S.M. (ed.) ISSAC 2010, pp. 53–59. Association for Computing Machinery, New York (2010)
Gerdt, V.P.: Consistency analysis of finite difference approximations to PDE systems. In: Adam, G., Buša, J., Hnatič, M. (eds.) MMCP 2011. LNCS, vol. 7125, pp. 28–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28212-6_3
Levin, A.: Difference Algebra. Algebra and Applications, vol. 8. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-6947-5
Gerdt, V., La Scala, R.: Noetherian quotients of the algebra of partial difference polynomials and Gröbner bases of symmetric ideals. J. Algebra 423, 1233–1261 (2015)
Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory. In: Bose, N.K. (ed.) Recent Trends in Multidimensional System, pp. 184–232. Reidel, Dordrecht (1985)
Adams, W.W., Loustanau, P.: Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3. American Mathematical Society (1994)
Robertz, D.: Formal Algorithmic Elimination for PDEs. LNM, vol. 2121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11445-3
Chertock, A., Christov, C.I., Kurganov, A: Central-upwind schemes for Boussinesq paradigm equations. In: Krause, E., Shokin, Yu., Resch, M., Kröner, D., Shokina, N. (eds.) Computational Science and High Performance Computing IV, vol. 115, pp. 267–281 (2011)
Shokin, Y.I.: The Method of Differential Approximation, 1st edn. Springer, Heidelberg (1983)
Ganzha, V.G., Vorozhtsov, E.V.: Computer-aided Analysis of Difference Schemes for Partial Differential Equations. Wiley, New York (1996)
Moin, P.: Fundamentals of Engineering Numerical Analysis, 2nd edn. Cambridge University Press, Cambridge (2010)
Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24, 1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-01287-7
Blinkov, Yu.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE package janet: II. Linear partial differential equations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing, CASC 2003, pp. 41–54. Technische Universität München (2003). Package Janet is freely available on the web page http://134.130.169.213/Janet/
Gerdt, V.P., Robertz, D.: Computation of difference Gröbner bases. Comput. Sc. J. Moldova. 20(2), 203–226 (2012). Package LDA is freely available on the web page http://134.130.169.213/Janet/
Acknowledgements
This work has been partially supported by the Russian Foundation for Basic Research (grant No. 18-51-18005) and by the RUDN University Program (5-100).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Blinkov, Y.A., Gerdt, V.P., Pankratov, I.A., Kotkova, E.A. (2019). Construction of a New Implicit Difference Scheme for 2D Boussinesq Paradigm Equation. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-26831-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26830-5
Online ISBN: 978-3-030-26831-2
eBook Packages: Computer ScienceComputer Science (R0)